Knowledge Representation and Databases

Enrico Franconi

KRDB Research Centre for Knowledge and Data
Free University of Bozen-Bolzano, Italy

http://krdb.eu/franconi

Cape-KR 2024

Summary of this talk

VVVvyVvVvYvVvyVvYVYyy

Databases and Logic

Conceptual Schemas

Querying databases via the conceptual schema
DBoxes and ABoxes

Conceptual Schemas with different vocabularies
Lossless schema transformations

Query rewriting

Null values in SQL

Databases and Logic
> A database is a finite relational structure
(a first-order interpretation)

» Database constraints are first-order logic formulas;
a database should be a model of these constraints

» — satisfaction
> — querying

Employee Works-for 1.« Project

Manager

Employee = { John, Mary, Paul }

Manager = { John, Paul }

Works-for = { (John,Prj-A), (Mary,Prj-B) }
Project = { Prj-A, Prj-B }

Databases and Logic
> A database is a finite relational structure
(a first-order interpretation)

» Database constraints are first-order logic formulas;
a database should be a model of these constraints

» — satisfaction
> — querying

» An incomplete database is a set of databases

» An incomplete database can be expressed by the models of a
logic formula

» — entailment
» — querying

Databases and Logic
> A database is a finite relational structure
(a first-order interpretation)

» Database constraints are first-order logic formulas;
a database should be a model of these constraints

» — satisfaction
> — querying

» An incomplete database is a set of databases

» An incomplete database can be expressed by the models of a
logic formula

» — entailment

» — querying

» (By the way, also a single database can be expressed by means
of logic formulas — Reiter)

Ontologies (Conceptual Schemas)

> A semantic layer gives an abstract perspective to a system,
different from its original representation.

P Its purpose is to introduce a vocabulary understandable by the
agents that need to interact with the system.

» An ontology is a semantic layer including a set of first order
constraints (the semantics) over the given vocabulary, which
specifies what should hold in any possible configuration of the
system.

» Given an ontology, a legal database is a (finite) model
satisfying the constraints.

UML Class Diagram

Employee

PaySlipNumber:Integer Works-for
Salary:Integer
1.x
Manager Project
ProjectCode:String
1.1
{disjoint,complete}
Manages
AreaManager TopManager &

Entity-Relationship Schema

PaySlipNumber(Integer)
Salary(Integer)

Employee Works-for

A)
(L) ProjectCode(String)

Manager L
Project

AreaManager | TopManager

Constraints induced by the diagram

Works-for C Employee x Project

Manages C TopManager x Project

Employee C {e | f(PaySlipNumber N ({e} x Integer)) > 1}
Employee C {e | f(Salary N ({e} x Integer)) > 1}
Project C {p | #(ProjectCode N ({p} x String)) > 1}
TopManager C {m | 1 > #§(Manages N ({m} x Q)) > 1}
Project C {p | 1 > #§(Manages N (2 x {p})) > 1}
Project C {p | §(Works-for N (2 x {p})) > 1}

Manager C Employee

AreaManager C Manager

TopManager C Manager

AreaManager N TopManager = ()

Manager C AreaManager U TopManager

Bijection: how many numbers

Natural Number

|~
-

corresponds

Even Number

=
i

Bijection: how many numbers

Natural Number

|~
-

corresponds

Even Number

=
i

the classes ‘Natural Number’ and 'Even Number’
contain the same number of instances

Bijection: how many numbers

Natural Number

|~
-

corresponds

Even Number

=
i

the classes ‘Natural Number’ and 'Even Number’
contain the same number of instances

If the domain is finite: Natural Number = Even Number

Key constraints

Employee
PaySlipNumber:Integer Works-for
Salary:Integer

1.x

Manager Project
ProjectCode:String

1.1
{disjoint,complete }

Manages

AreaManager TopManager

Vx. Project(x) — 3= 'y. ProjectCode(x,y) A String(y)
Vy. 3x. ProjectCode(x,y) = 3='x. ProjectCode(x,y) A Project(x)

Queries via Conceptual Schemas: the DB case

Employee Works-for 1.« Project

Manager

Queries via Conceptual Schemas: the DB case

Employee Works-for 1.« Project

Manager

Employee = { John, Mary, Paul }

Manager = { John, Paul }

Works-for = { (John,Prj-A), (Mary,Prj-B) }
Project = { Prj-A, Prj-B }

Queries via Conceptual Schemas: the DB case

Employee Works-for 1.« Project

Manager

Employee = { John, Mary, Paul }

Manager = { John, Paul }

Works-for = { (John,Prj-A), (Mary,Prj-B) }
Project = { Prj-A, Prj-B }

Q(x) :- dy. Manager(x) A Works-for(x,y) A Project(y)
— { John }

Queries via Conceptual Schemas: the DBox case

Employee Works-for 1.« Project

Manager

Manager = { John, Paul }
Works-for = { (John,Prj-A), (Mary,Prj-B) }
Project = { Prj-A, Prj-B }

Queries via Conceptual Schemas: the DBox case

Employee Works-for 1.« Project

Manager

Manager = { John, Paul }
Works-for = { (John,Prj-A), (Mary,Prj-B) }
Project = { Prj-A, Prj-B }

Q(x) :- Employee(x)

Queries via Conceptual Schemas: the DBox case

Employee Works-for 1.«

Project

Manager

Manager = { John, Paul }

Works-for = { (John,Prj-A), (Mary,Prj-B) }
Project = { Prj-A, Prj-B }

Q(x) :- Employee(x)
= { John, Paul, Mary }

certain answer (entailment)

Queries via Conceptual Schemas: the DBox case

Employee Works-for 1.« Project

Manager

Manager = { John, Paul }
Works-for = { (John,Prj-A), (Mary,Prj-B) }
Project = { Prj-A, Prj-B }

Q(x) :- Employee(x)
= { John, Paul, Mary } certain answer (entailment)

= Q’(x) :- Manager(x) V Jy. Works-for(x,y)

Queries via Conceptual Schemas: the ABox case

Employee Works-for 1..x Project

Works-for O { (John,Prj-A), (Mary,Prj-A) }
Project O { Prj-A, Prj-B }

Queries via Conceptual Schemas: the ABox case

Employee Works-for 1..x Project

Works-for O { (John,Prj-A), (Mary,Prj-A) }
Project O { Prj-A, Prj-B }

Q(y) :- Ix. Works-for(x,y) certain answer

Queries via Conceptual Schemas: the ABox case

Employee Works-for 1..x Project

Works-for O { (John,Prj-A), (Mary,Prj-A) }
Project O { Prj-A, Prj-B }

Q(y) :- Ix. Works-for(x,y) certain answer
— { Prj-A, Prj-B }

Queries via Conceptual Schemas: the ABox case

Employee Works-for 1..x Project

Works-for O { (John,Prj-A), (Mary,Prj-A) }
Project O { Prj-A, Prj-B }

Q(y) :- Ix. Works-for(x,y) certain answer
— { Prj-A, Prj-B }

— Q> (y) :- Project(y) V dx. Works-for(x,y)

Bad news

Query answering with certain answer semantics
with DBoxes or ABoxes

with expressive conceptual modelling languages
is coNP-hard in data complexity.

Bad news

Query answering with certain answer semantics
with DBoxes or ABoxes

with expressive conceptual modelling languages
is coNP-hard in data complexity.

Fixes:

1. reduce expressivity of conceptual modelling languages and
queries (OBDA approach);

2. use exact answer semantics allowing only determined queries
(reduction to lossless transformations).

Bad news

Query answering with certain answer semantics
with DBoxes or ABoxes

with expressive conceptual modelling languages
is coNP-hard in data complexity.

Fixes:

1. reduce expressivity of conceptual modelling languages and
queries (OBDA approach);

2. use exact answer semantics allowing only determined queries
(reduction to lossless transformations).

More bad news follow.

Queries with certain answer semantics

Employee

Manager

Manager = { John, Paul }

Queries with certain answer semantics

Employee

Manager

Manager = { John, Paul }

Q(x) :- Employee(x)

Queries with certain answer semantics

Employee

Manager

Manager = { John, Paul }

Q(x) :- Employee(x) = { John, Paul } certain answer

Queries with certain answer semantics

Employee

Manager

Manager = { John, Paul }

Q(x) :- Employee(x) = { John, Paul } certain answer

So: are Managers and Employees the same?

Queries with certain answer semantics

Employee

Manager

Manager = { John, Paul }

Q(x) :- Employee(x) == { John, Paul } certain answer

Queries with certain answer semantics

Employee

Manager

Manager = { John, Paul }
Q(x) :- Employee(x) == { John, Paul } certain answer
Q' :- Manager(George)

Q% :- Employee(George)

Queries with certain answer semantics

Employee

Manager

Manager = { John, Paul }

Q(x) :- Employee(x) == { John, Paul } certain answer
Q' :- Manager(George) —> FALSE

Q% :- Employee(George)

Queries with certain answer semantics

Employee

|

Manager

Manager = { John, Paul }
Q(x) :- Employee(x) == { John, Paul } certain answer
Q' :- Manager(George) —> FALSE

Q% :- Employee(George) —> DON'T KNOW

Queries with certain answer semantics

Employee

|

Manager

Manager = { John, Paul }

Q(x) :- Employee(x) == { John, Paul } certain answer
Q' :- Manager(George) —> FALSE

Q% :- Employee(George) —> DON'T KNOW

The result of the query can not be materialised (as a view)

The general case:
Conceptual Schemas with different vocabularies

Employee Project
1ok Works-for 1ok
name name
— ——

Employee-table:(EmpOID, Ename, ProjOID, Pname)
FD: EmpOID — Ename
FD: ProjOID — Pname

The general case:
Conceptual Schemas with different vocabularies

Employee Project
1ok Works-for 1ok
name name
— _

Employee = { John, Mary}

EmployeeName = { (John,"John"), (Mary,"Mary") }

Project = { Prj-A, Prj-B }

ProjectName = { (Prj-A,"Prj-A"), (Prj-B,"Prj-B") }
Works-for = { (John,Prj-A), (John,Prj-B), (Mary,Prj-A) }

Employee-table:(EmpOID, Ename, ProjOID, Pname)
FD: EmpOID — Ename
FD: ProjOID — Pname

Employee-table = {(John,"John", Prj-A,"Prj-A"),
(John,"John", Prj-B,"Prj-B"),
(mary,"Mary", Prj-A,"Prj-A")}

Lossless Transformations (aka Equivalence)

» Two (conceptual) schemas with different vocabularies are
lossless transformations of one another (i.e., they are
equivalent) if there exist two total injective mappings from
legal database instances in one schema to legal database
instances in the other schema such that their composition is
the identity.

» Query answering and updates across equivalent schemas
involves expanding those mappings as views.

Lossless Transformations

Employee Project
1ok Works-for 1ok
name name
— ——

Employee-table: (Emp0ID, Ename, Proj0ID, Pname)
FD: EmpOID — EnameD
FD: ProjOID — Pname

Lossless Transformations

Employee Project
1ok Works-for 1ok
name name
— ——

Employee = Ty, Employee-table
EmployeeName = Tlo01p pane EmMployee-table
Project = Ty, o50p Employee-table
ProjectName = 70}, i0m,pnane EMPlOoyee-table
Works—for = Ty m projorp EMPployee-table

Employee-table: (Emp0ID, Ename, Proj0ID, Pname)
FD: EmpOID — EnameD
FD: ProjOID — Pname

Lossless Transformations

Employee Project
1ok Works-for 1ok
name name
g | —

Employee = Ty, Employee-table
EmployeeName = Tlo01p pane EmMployee-table
Project = Ty, o50p Employee-table
ProjectName = 70}, i0m,pnane EMPlOoyee-table
Works—for = Ty m projorp EMPployee-table

Employee-table =
EmployeeName < ProjectName p<I Works—for

Employee-table: (Emp0ID, Ename, Proj0ID, Pname)
FD: EmpOID — EnameD
FD: ProjOID — Pname

Object Identifiers

» A special lossless transformation: handling of the Object
Identifiers using Primary Keys or (better) Reference Scheme

Modelling.
Employee Project
SSN (PK) 1.x Works-for 1..x | ProjCode (PK)
name name

Employee-table:(SSN, Ename, ProjCode, Pname)
FD: EmpOID — EnameD
FD: ProjOID — Pname

The Canonical Abstract Relational Schema

» Lossless transformations are the formal foundation of
Database Design, of Database Normalisation, and of Database
Reverse Engineering.

» Theorem: given an arbitrary database schema, there is a
unique equivalent Canonical Abstract Relational Schema
(CARM) equivalent, and it corresponds to its 6" normal form
with the careful addition of object identifiers.

» The CARM of a database schema corresponds to its
cognitively plausible conceptual schema.

Queries and Updates

» Q(y) :- {ylEmployee(x) A name(x,y) A
Works-for(x,z) A name(z,"Projectl")}
» DELETE: dx.Project(x) A ProjCode(x,"P1")

Employee Project
SSN (PK) 1.x Works-for 1..x | ProjCode (PK)
name name

Employee-table:(SSN, Ename, ProjCode, Pname)
FD: EmpOID — EnameD
FD: ProjOID — Pname

END OF PART ONE

Formal definition of a DBox

» DBox D: a set of database tuples of the forms P : (a1 ---a,)
» DBox predicates: the database predicates P appearing in D

» active domain act(D): the constants a; appearing in D

Formal definition of a DBox

DBox D: a set of database tuples of the forms P : (a;---a,)
DBox predicates: the database predicates P appearing in D
active domain act(D): the constants a; appearing in D

An interpretation Z = (A, -T) embeds a database D iff
> af = a for every a € act(D),
> for every DBox predicate P and every
(up---u,) € AT x - x AT,
(ur -~ uy) € PLIffP:(up---u,) €D
P In other words, in every interpretation embedding D the
extensions of the DBox predicates are given by the contents of
the DBox, and are always the same

vvyVvyy

Formal definition of a DBox

vvyVvyy

DBox D: a set of database tuples of the forms P : (a;---a,)
DBox predicates: the database predicates P appearing in D
active domain act(D): the constants a; appearing in D

An interpretation Z = (A, -T) embeds a database D iff
> af = a for every a € act(D),
> for every DBox predicate P and every
(up---u,) € AT x - x AT,
(ur -~ uy) € PLIffP:(up---u,) €D
In other words, in every interpretation embedding D the
extensions of the DBox predicates are given by the contents of
the DBox, and are always the same

A model of a conceptual schema (FOL/DL) with a DBox
(7, D) should always embed the DBox.

Determinacy - or implicit definability

Given a conceptual schema and a DBox, a query which depends
only on the DBox predicates is called implicitly definable or
determined by the DBox.

Definition (Implicit definability)

A query Q is implicitly definable from the DBox predicates in a
theory 7 iff any two models of 7 that have the same domain and
agree in what they assign to the DBox predicates also agree in
what they assign to the query Q.

If a query is implicitly definable, then its evaluation depends only
on the database; therefore implicitly definable queries characterise
precisely views.

Beth (1953) and Craig (1957) constructively proved that there is a
way to check whether an arbitrary query is determined by a DBox
given a general first-order logic conceptual schema.

Example: implicit definability

Female C Person

Male C Person

Female NMale = ()
Person C Male U Female

Male is implicitly definable from Person and Female

Rewriting - or explicit definability

If a query is implicitly definable given a general first-order logic
conceptual schema, Beth (1953) and Craig (1957) constructively
proved that it is possible to rewrite the query using only the
vocabulary of the DBox (and therefore independent on the
conceptual schema, since the extension of the DBox is fixed).

This is its explicit definition.

Example: explicit definability

Female C Person

Male C Person

Female NMale = ()
Person C Male U Female

Male is implicitly definable from Person and Female;
the explicit definition is:

Male = Person \ Female

Problem: “unsafe” rewritings

Conceptual schema: Male = —Female
DBox: Female = {mary}
Query: Q :- —3Ix.Male(x)

Problem: “unsafe” rewritings

Conceptual schema: Male = —Female
DBox: Female = {mary}
Query: Q :- —3Ix.Male(x)

» If the only known individual is mary, the answer is YES.

» Indeed, this is the rewriting of the query: Vx.Female(x)

Problem: “unsafe” rewritings

Conceptual schema: Male = —Female
DBox: Female = {mary} Car = {herbie}
Query: Q :- —3Ix.Male(x)

» If the only known individual is mary, the answer is YES.
» Indeed, this is the rewriting of the query: Vx.Female(x)
» But if we add to the domain the individual herbie as a car

(namely, we extend the active domain),
then the answer is NO.

Problem: “unsafe” rewritings

Conceptual schema: Male = —Female
DBox: Female = {mary} Car = {herbie}
Query: Q :- —3Ix.Male(x)

» If the only known individual is mary, the answer is YES.
» Indeed, this is the rewriting of the query: Vx.Female(x)
» But if we add to the domain the individual herbie as a car

(namely, we extend the active domain),
then the answer is NO.

The query is not domain independent.

Domain independent formulas
¢ is domain independent whenever:

given Z= (AT I) and J=(A77T)

with AT C A7

then (AT, 1) = ¢ iff (AT Ty =

Observations:
» E/R, ORM, UML are all domain independent languages

> Relational algebra is exactly the domain independent fragment
of first order logic

» (Core) SQL is equivalent to relational algebra

Domain independent rewritings

Theorem

If a first-order logic conceptual schema is domain independent,
then the rewriting of determined domain independent first-order
logic queries is also a domain independent first-order logic query.

Theorem

The domain independent fragments of the decidable description
logics ACCHOTZ and ALCHOQ are equally expressive to their
syntactic safe-range fragments, and they have finitely controllable
determinacy.

Task: query rewriting

Our goals are

1. to check whether the answers to a given domain independent
query under a domain independent first-order logic conceptual
schema are solely determined by the DBox and, if so,

2. to find a first-order/SQL equivalent (modulo the conceptual
schema) domain independent rewriting (called exact rewriting)
of the query in terms of the DBox predicates to allow the use
of standard database technology for answering the query.

3. Indeed, this means we benefit from the low computational
complexity — logarithmic space in the size of the data — of
answering first-order queries on relational databases.

4. If queries are just atomic queries, then it is possible to
pre-compute all the rewritings of all the determined predicates
as relational views, and to allow arbitrary SQL queries on top
of them.

Conceptual Schema Abduction

Employee

Manager

Manager = { John, Paul }
Q(X) :- Employee(X)

Exact rewriting of Q:
Certain answer of Q:

Conceptual Schema Abduction

Employee

Manager

Manager = { John, Paul }
Q(X) :- Employee(X)

Exact rewriting of Q: impossible.
Certain answer of Q:

Conceptual Schema Abduction

Employee

Manager

Manager = { John, Paul }
Q(X) :- Employee(X)

Exact rewriting of Q: impossible.
Certain answer of Q: {John, Paul}

Conceptual Schema Abduction

Employee

Manager

Manager = { John, Paul }
Q(X) :- Employee(X)

Exact rewriting of Q: impossible.
Certain answer of Q: {John, Paul}

yaN
Employee\

/

Manager

Manager = {John, Paul}
Q(X) :- Employee(X)

Exact rewriting: Manager (X)
Certain answer of Q: {John, Paul}

Conceptual Schema Abduction

Employee

Manager

Manager = { John, Paul }
Q(X) :- Employee(X)

Exact rewriting of Q: impossible.
Certain answer of Q: {John, Paul}

yaN
Employee\

/

Manager

Manager = {John, Paul}
Q(X) :- Employee(X)

Exact rewriting: Manager (X)
Certain answer of Q: {John, Paul}

The abduction is the model-theoretically /east committing
extension of the ontology such that the query becomes implicitly

definable.

NULL values in SQL: algebra and logic

Spouse = {"John", "Mary"}
Spouse = {"Louise", NULL}

SELECT 1,2 FROM Spouse WHERE 1 = 1 AND 2 = 2;
01=1,2=2 (Spouse X Spouse)

{x,y|Spouse(x,y) A Spouse(x,y)}

SQL answer: {"John", "Mary"}

NULL values in SQL: algebra and logic

Theorem (extended Codd’s theorem with SQL null values)
The following are equivalent:

>
>
>

standard core SQL with null values over a three-valued logic;
SQL with null values over classical two-valued logic;

a simple extension with null values of standard relational
algebra in which the selection operators fails systematically
the comparisons involving null values;

a first-order logic language with an explicit NULL term, with
the interpretation of predicates as partial tuples (i.e.,
predicates denote tuples over subsets of the arguments instead
of the whole set of arguments); in this logic the null value
does not appear as an element of the semantic domain.

a classical first order logic with an exponentially larger
signature.

Conclusions

Conclusions

Do you want to use knowledge representation
with databases?

Conclusions

Do you want to use knowledge representation
with databases?

Pay attention!

