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Motivation
• We study Answer-set Programming (ASP) 

• ASP is a popular declarative problem-solving paradigm

• Efficient solvers exist

• It’s rule-based nature makes it attractive for critical domains

• It has been utilised for:

Provided solutions still need to be explained

Medicine Scheduling Planning Logistics Pathfinding
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,  and  are atomsa1, …, ak bk+1, …, bm bm+1, …, bn

Atoms can be ground or have variables: 	

An interpretation  is a set of ground atoms, which satisfies a rule if: 𝐼

whenever  and , then  for some bk+1, …, bm ∈ I bm+1, …, bn ∉ I ai ∈ I (1 ≤ i ≤ k)
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Neural Networks

External Computations

Custom Theories

Probabilistic Reasoning

impossible unlikely likelyeven chance Choice & Aggregates

{colored(N,C) : color(C)} :- node(N)

#count{ E : empl(E), cert(E,C) }

Equilibrium Logic

• Choice rules & Aggregates
- Syntactic sugar
- but very useful

• HEX programs / clingo

• ASP modulo Theories
- Linear Constraints (CASP)
- Difference Logic
- …

• Equilibrium Logic 

• NeurASP

• LPMLN
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Explanations for inconsistent programs are mostly considered for debugging

Approaches are based on:

• Giving reasons as to why each interpretation is not an answer-set

• Minimally inconsistent sets of rules

• Interactive, user-guided solving

Supported language features again vary

The produced explanations are very technical!
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Open Problems
• Most existing approaches lack support for language extensions

• How can variables, external computations, theories or neuro-symbolic extensions be included?

• To which detail should those extensions be involved?

• Nonmonotonicity poses challenges

• Miller1 argues that explanations should be causal, interactive and contrastive

• How should we approach contrastive explanation for ASP?

Contrastive Question: Why P and not Q?
Example:

Classifier Crow

Why crow and not magpie?
• Black beak
• Feathers
• Size
• Wing colour

1 Tim Miller (2019): Explanation in artificial intelligence: Insights from the social sciences, Artificial Intelligence
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• Towards practical algorithms
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We consider the following setting:

Answer-Set  I
crow, feathers, beak, shape, darkwingsbird ← feathers, beak, shape

crow ← bird, dark wings

ASP Program P

magpie ← bird, whitewings

feathers, beak, shape, dark wings

Why  rather than ?E F

E ⊆ I
Explanandum

F ∩ I = ∅
Foil

We want to find a program  with  such that  and   P′￼ I′￼∈ AS(P′￼) F ⊆ I′￼ E ⊈ I′￼
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Continue investigation of contrastive explanation

• Sharpen definitions and theoretical foundation

• Encodings and/or algorithms

Study how extensions can be incorporated in the explanations

• white-box, black-box, grey-box

Development of a prototype using contrastive and non-contrastive explanations 
interactively


