
Foundations of logic programming semantics:

an operator-based perspective

Jesse Heyninck

February 2, 2024

Open Universiteit, the Netherlands

University of Cape Town, South Africa

1

Logic Programming

• Specific, powerful family of languages for knowledge

representation (problems up to second level of polynomial

hierarchy).

• Efficient, user-friendly solvers (clingo1, DLV) and tools.2

• Hallmark of the declarative programming approach: describe a

problem (without having to describe how to find solutions).

node(1..6).

edge(1,2;1,3;1,4;2,4;2,5;2,6;3,1;3,4;3,5;4,1).

col(r). col(g). col(b).

{ color(X,C) : col(C) } =1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).
1https://potassco.org/clingo/run/
2https://potassco.org/related/ and their weekly seminar.

2

https://potassco.org/clingo/run/
https://potassco.org/related/

Example Applications: Student Projects

• Puzzles and games:

• Rush hour

• Rubics

• Futoshiki

• Kakurasu

• IQ Puzzler Pro

• Generating healthy diets.

• Procedural content generation.

• Parsing grammatical structure of Latin.

• Minimum Sum Partition Problem.

3

Example Applications: Knowledge Representation

• Solvers or reasoners for:

• Formal argumentation [DRWW20]

• AGM Belief Revision [AP17, BNBPW04]

• Boolean networks [KB19]

• Ordered disjunction [BNS02]

• Description Logics [Swi04]

• Inconsistency Measures [KT21]

• Linear temporal logic [KCG23]

• Logic programming (!?) [KRSW23]

• Axiom pinpointing in ontologies [HMP+23]

• . . .

4

The ASP-workflow

Program

Grounder

Propositional Program

Solver

Answer Sets

penguin(tweety).

bird(zazu).

bird(X)← penguin(X).

flies(X)← bird(X), ¬ ab(X).

ab(X)← penguin(X).

penguin(tweety).

bird(zazu).

bird(tweety)← penguin(tweety).

flies(tweety)← bird(tweety), ¬ ab(tweety).

ab(tweety)← penguin(tweety).

bird(zazu)← penguin(zazu).

flies(zazu)← bird(zazu), ¬ ab(zazu).

ab(zazu)← penguin(zazu).

{
penguin(tweety) bird(tweety) ab(tweety)

bird(zazu) bird(zazu) flies(zazu)

}
5

The ASP-workflow

Focus of today:

Propositional Program

Solver

Answer Sets

penguin(tweety).

bird(zazu).

bird(tweety)← penguin(tweety).

flies(tweety)← bird(tweety), ¬ ab(tweety).

ab(tweety)← penguin(tweety).

bird(zazu)← penguin(zazu).

flies(zazu)← bird(zazu), ¬ ab(zazu).

ab(zazu)← penguin(zazu).

{
penguin(tweety) bird(tweety) ab(tweety)

bird(zazu) bird(zazu) flies(zazu)

}

What are answer sets and what is so special about them?

5

The ASP-workflow

Focus of today:

Propositional Program

Solver

Answer Sets

penguin(tweety).

bird(zazu).

bird(tweety)← penguin(tweety).

flies(tweety)← bird(tweety), ¬ ab(tweety).

ab(tweety)← penguin(tweety).

bird(zazu)← penguin(zazu).

flies(zazu)← bird(zazu), ¬ ab(zazu).

ab(zazu)← penguin(zazu).

{
penguin(tweety) bird(tweety) ab(tweety)

bird(zazu) bird(zazu) flies(zazu)

}

What are answer sets and what is so special about them?†

†Interested in other aspects of logic programming? I’ll see you in a week or

take a look at https://teaching.potassco.org/. 5

https://teaching.potassco.org/

Goals and Structure

• Provide a gentle introduction to the semantics of logic
programming:

• Supported models

• Kripke-Kleene models

• Stable models

• Well-founded model

• Illustrate the operator-based approach to KR with a
paradigmatic example.

• Basic constructions of approximation fixpoint theory (for logic

programs).

• From logic programming to operators.

6

Almost nothing of this is my work

• Operator-based approach has driven logic programming since

its inception [VGRS91, Fit06].

• Studied algebraically by Denecker, Marek and Truszczyński

[DMT00].

• I extended and worked in this algebraic framework with Ofer

Arieli and Bart Bogaerts.

7

Goals and Structure

Syntax of Logic Programs

Semantics of Positive Programs

Semantics of Normal Logic Programs

Stable Semantics

Approximation Fixpoint Theory

Round up

8

Syntax of Logic Programs

Syntax of Logic Programs

Set of atoms A = {a, b, c , p, q, r , a1, a2, . . .}

a← b1, . . . , bn,¬c1, . . . ,¬cm

• Program is a set of rules.

• Rule is positive if m = 0.

• Program is positive if all the rules are positive.

9

Semantics of Positive Programs

What are the semantics of logic programs?

p ← q.

Classical models? ∅, {p}, {p, q}.

Notice: a formula follows from every classical model if it follows

from ∅.

∅

{p} {q}

{p, q}

10

What are the semantics of logic programs?

p ← q., q ← .

Classical models? ∅, {p}, {p, q}.

∅

{p} {q}

{p, q}

11

What are the semantics of logic programs?

p ← q., q ← .

Classical models? ∅, {p}, {p, q}.

∅

{p} {q}

{p, q}

11

What are the semantics of logic programs?

p ← q., q ← .

Classical models? ∅, {p}, {p, q}.

∅

{p} {q}

{p, q}

11

TP-operator

TP : ℘(AP) 7→ ℘(AP)

TP(x) = {a | a← b1, . . . , bn ∈ P and b1, . . . , bn ∈ x}

Example

P = {p ← q., q ← .}

x ∅ {p} {q} {p, q}
TP(x) {q} {q} {p, q} {p, q}

∅

{p} {q}

{p, q}

12

Models and Fixpoints

Definition
x is a post-fixpoint of TP if TP(x) ⊆ x.

Intuition: everything I can derive from x using P is in x .

Models of P.

Definition
x is a fixpoint of TP if TP(x) = x.

Intuition: same, plus everything in x is derivable.

Supported models of P.

Example

P = {p ← q.}

∅

{p} {q}

{p, q}

13

Models and Fixpoints

Definition
x is a post-fixpoint of TP if TP(x) ⊆ x.

Intuition: everything I can derive from x using P is in x .

Models of P.

Definition
x is a fixpoint of TP if TP(x) = x.

Intuition: same, plus everything in x is derivable.

Supported models of P.

Example

P = {p ← q.}

∅

{p} {q}

{p, q}

13

Models and Fixpoints

Definition
x is a post-fixpoint of TP if TP(x) ⊆ x.

Intuition: everything I can derive from x using P is in x .

Models of P.

Definition
x is a fixpoint of TP if TP(x) = x.

Intuition: same, plus everything in x is derivable.

Supported models of P.

Example

P = {p ← q.}

∅

{p} {q}

{p, q}

13

Models and Fixpoints

Definition
x is a post-fixpoint of TP if TP(x) ⊆ x.

Intuition: everything I can derive from x using P is in x .

Models of P.

Definition
x is a fixpoint of TP if TP(x) = x.

Intuition: same, plus everything in x is derivable.

Supported models of P.

Example

P = {p ← ., q ← q.}

∅

{p} {q}

{p, q}

13

Models and Fixpoints

• For positive programs, TP has a unique least fixpoint x .

• It is also the least pre-fixpoint.

• We can compute it by iterating TP starting from ∅:
TP(. . .TP(∅) . . .) =

⋃
i≥0 T i

P(∅)
And this is possible in polynomial time.

14

Models and Fixpoints

• For positive programs, TP has a unique least fixpoint x .

• Any fixpoint y of TP will be a superset: x ⊆ y .

• It is also the least pre-fixpoint.

• Any pre-fixpoint y of TP will be a superset: x ⊆ y .

• P has a least model,

i.e. any model of P is included in y .

• If something follows from every model of P, it follows from x .

• We can compute it by iterating TP starting from ∅:
TP(. . .TP(∅) . . .)
And this is possible in polynomial time.

14

Models and Fixpoints

• For positive programs, TP has a unique least fixpoint x .

• Any fixpoint y of TP will be a superset: x ⊆ y .

• It is also the least pre-fixpoint.

• Any pre-fixpoint y of TP will be a superset: x ⊆ y .

• P has a least model,

i.e. any model of P is included in y .

• If something follows from every model of P, it follows from x .

• We can compute it by iterating TP starting from ∅:
TP(. . .TP(∅) . . .)
And this is possible in polynomial time.

Underlying result: A ⊆-monotonic operator over a complete

lattice admits a least fixpoint.

14

Least fixpoint computation

P = {p ← . q ← p. r ← p, q.}

∅

{p} {q}{r}

{p, q}{p, r} {q, r}

{p, q, r}

15

Least fixpoint computation

P = {p ← . q ← p. r ← p, q.}

∅

{p} {q}{r}

{p, q}{p, r} {q, r}

{p, q, r}

15

Least fixpoint computation

P = {p ← . q ← p. r ← p, q.}

∅

{p} {q}{r}

{p, q}{p, r} {q, r}

{p, q, r}

15

Least fixpoint computation

P = {p ← . q ← p. r ← p, q.}

∅

{p} {q}{r}

{p, q}{p, r} {q, r}

{p, q, r}

15

Least fixpoint 6= unique fixpoint

Example (P = {p ← p.})

∅

{p} {q}

{p, q}

16

Semantics of Normal Logic

Programs

Enters Negation

p ← ¬q

How to extend our operator?

Easy:

TP(x) = {a | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P, and

b1, . . . , bn ∈ x , and c1, . . . , cm 6∈ x}

∅

{p} {q}

{p, q}

17

Enters Negation

p ← ¬q

How to extend our operator?

Easy:

TP(x) = {a | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P, and

b1, . . . , bn ∈ x , and c1, . . . , cm 6∈ x}

∅

{p} {q}

{p, q}

17

Enters Negation

p ← ¬q

How to extend our operator?

Easy:

TP(x) = {a | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P, and

b1, . . . , bn ∈ x , and c1, . . . , cm 6∈ x}

∅

{p} {q}

{p, q}

17

Great, thanks for your attention

18

Great, thanks for your attention

P = {p ← ¬p}

∅

{p} {q}

{p, q}

18

No unique fixpoint

P = {p ← ¬q; q ← ¬p}

∅

{p} {q}

{p, q}

19

Problems with negation

• There might not be a fixpoint.

• There might be multiple minimal fixpoints.

• We don’t know how to find fixpoints.

20

Problems with negation

• There might not be a fixpoint.

• There might be multiple minimal fixpoints.

• We don’t know how to find fixpoints.

• Anyone sees what went wrong with our operator?

20

Problems with negation

• There might not be a fixpoint.

• There might be multiple minimal fixpoints.

• We don’t know how to find fixpoints.

• Anyone sees what went wrong with our operator?

⇒ It is not a monotonic operator

∅

{p} {q}

{p, q}

20

Approximations

• Pairs of sets of atoms (x , y).

• x contains all atoms that are definitely true.

• y contains all atoms that are possibly true.

• How to compare such pairs of sets?

• (x1, y1) ≤t (x2, y2) if x1 ⊆ x2 and y1 ⊆ y2.

• (x1, y1) ≤i (x2, y2) if x1 ⊆ x2 and y2 ⊆ y1.

Example
({p}, {p, q}): p is true and q can be true.

({p}, {p}) ≤t ({p}, {p, q})
({p}, {p, q}) ≤i ({p}, {p})

21

Approximations

• Pairs of sets of atoms (x , y).

• x contains all atoms that are definitely true.

• y contains all atoms that are possibly true.

• How to compare such pairs of sets?

• (x1, y1) ≤t (x2, y2) if x1 ⊆ x2 and y1 ⊆ y2.

• (x1, y1) ≤i (x2, y2) if x1 ⊆ x2 and y2 ⊆ y1.

Example
({p}, {p, q}): p is true and q can be true.

({p}, {p}) ≤t ({p}, {p, q})
({p}, {p, q}) ≤i ({p}, {p})

21

Approximations

• Pairs of sets of atoms (x , y).

• x contains all atoms that are definitely true.

• y contains all atoms that are possibly true.

• How to compare such pairs of sets?

• (x1, y1) ≤t (x2, y2) if x1 ⊆ x2 and y1 ⊆ y2.

• (x1, y1) ≤i (x2, y2) if x1 ⊆ x2 and y2 ⊆ y1.

Example
({p}, {p, q}): p is true and q can be true.

({p}, {p}) ≤t ({p}, {p, q})
({p}, {p, q}) ≤i ({p}, {p})

21

Graphical Depiction

∅

{p} {q}

{p, q}

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅) ≤i

22

Graphical Depiction

∅

{p} {q}

{p, q}

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅) ≤i

22

Graphical Depiction

∅

{p} {q}

{p, q}

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅) ≤i

22

Graphical Depiction

∅

{p} {q}

{p, q}

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅) ≤i

22

Approximations as Four-Valued Interpretations

≤i

≤t

U

F T

C

• −F = T, −T = F, −U = U and −C = C

• (x , y)(p) =


T if p ∈ x and p ∈ y ,

U if p 6∈ x and p ∈ y ,

F if p 6∈ x and p 6∈ y ,

C if p ∈ x and p 6∈ y .

• (x , y)(¬φ) = −(x , y)(φ),

• (x , y)(ψ ∧ φ) = lub≤t{(x , y)(φ), (x , y)(ψ)},
• (x , y)(ψ ∨ φ) = glb≤t{(x , y)(φ), (x , y)(ψ)}.

Example
({p}, {p, q})(p) = T ({p}, {p, q})(q) = U ({p}, {p, q})(r) = F.

({p}, {p, q})(¬p) = F ({p}, {p, q})(¬q) = U

({p}, {p, q})(p ∧ q) = U ({p}, {p, q})(q ∨ r) = U 23

Approximating TP (from below)

ICP : A×A 7→ A×A

We input an approximation and output an approximation.

IC lP(x , y) = {a ∈ A | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P,
b1, . . . , bn ∈ x and c1, . . . , cm 6∈ y}

or, equivalently

IC lP(x , y) = {a ∈ A | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P,
(x , y)(b1 ∧ bn ∧ ¬c1 ∧ . . . ∧ ¬cm) ∈ {T,C}}

Example ({p ← p,¬q})
IC lP({p}, {p, q}) = ∅
IC lP({p}, {p}) = {p}

24

Approximating TP (from below)

ICP : A×A 7→ A×A

We input an approximation and output an approximation.

IC lP(x , y) = {a ∈ A | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P,
b1, . . . , bn ∈ x and c1, . . . , cm 6∈ y}

or, equivalently

IC lP(x , y) = {a ∈ A | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P,
(x , y)(b1 ∧ bn ∧ ¬c1 ∧ . . . ∧ ¬cm) ∈ {T,C}}

Example ({p ← p,¬q})
IC lP({p}, {p, q}) = ∅
IC lP({p}, {p}) = {p}

24

Approximating TP (from below)

ICP : A×A 7→ A×A

We input an approximation and output an approximation.

IC lP(x , y) = {a ∈ A | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P,
b1, . . . , bn ∈ x and c1, . . . , cm 6∈ y}

or, equivalently

IC lP(x , y) = {a ∈ A | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P,
(x , y)(b1 ∧ bn ∧ ¬c1 ∧ . . . ∧ ¬cm) ∈ {T,C}}

Example ({p ← p,¬q})
IC lP({p}, {p, q}) = ∅
IC lP({p}, {p}) = {p}

24

Approximating TP (from below)

ICP : A×A 7→ A×A

We input an approximation and output an approximation.

IC lP(x , y) = {a ∈ A | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P,
b1, . . . , bn ∈ x and c1, . . . , cm 6∈ y}

or, equivalently

IC lP(x , y) = {a ∈ A | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P,
(x , y)(b1 ∧ bn ∧ ¬c1 ∧ . . . ∧ ¬cm) ∈ {T,C}}

Example ({p ← p,¬q})
IC lP({p}, {p, q}) = ∅
IC lP({p}, {p}) = {p}

24

Approximating TP (from above)

ICP : A×A 7→ A×A

We input an approximation and output an approximation.

ICuP(x , y) = {a ∈ A | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P,
b1, . . . , bn ∈ y and c1, . . . , cm 6∈ x}

or, equivalently

ICuP(x , y) = {a ∈ A | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P,
(x , y)(b1 ∧ bn ∧ ¬c1 ∧ . . . ∧ ¬cm) ∈ {U,T}}

Example ({p ← p,¬q})
ICuP({p}, {p, q}) = {p}
ICuP({p}, {p}) = {p}

25

Approximating TP (from above)

ICP : A×A 7→ A×A

We input an approximation and output an approximation.

ICuP(x , y) = {a ∈ A | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P,
b1, . . . , bn ∈ y and c1, . . . , cm 6∈ x}

or, equivalently

ICuP(x , y) = {a ∈ A | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P,
(x , y)(b1 ∧ bn ∧ ¬c1 ∧ . . . ∧ ¬cm) ∈ {U,T}}

Example ({p ← p,¬q})
ICuP({p}, {p, q}) = {p}
ICuP({p}, {p}) = {p}

25

Approximating TP (from above)

ICP : A×A 7→ A×A

We input an approximation and output an approximation.

ICuP(x , y) = {a ∈ A | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P,
b1, . . . , bn ∈ y and c1, . . . , cm 6∈ x}

or, equivalently

ICuP(x , y) = {a ∈ A | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P,
(x , y)(b1 ∧ bn ∧ ¬c1 ∧ . . . ∧ ¬cm) ∈ {U,T}}

Example ({p ← p,¬q})
ICuP({p}, {p, q}) = {p}
ICuP({p}, {p}) = {p}

25

Approximating TP (from above)

ICP : A×A 7→ A×A

We input an approximation and output an approximation.

ICuP(x , y) = {a ∈ A | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P,
b1, . . . , bn ∈ y and c1, . . . , cm 6∈ x}

or, equivalently

ICuP(x , y) = {a ∈ A | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P,
(x , y)(b1 ∧ bn ∧ ¬c1 ∧ . . . ∧ ¬cm) ∈ {U,T}}

Example ({p ← p,¬q})
ICuP({p}, {p, q}) = {p}
ICuP({p}, {p}) = {p}

25

The Approximation Operator ICP (for P = {p ← p,¬q})

ICP(x , y) = (IC lP(x , y), ICuP(x , y))

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)

26

Properties of ICP

• ICP approximates TP :

ICP(x , x) = (TP(x),TP(x)) for any x ⊆ A.

• ICP is ≤i -monotonic:

if (x1, y1) ≤i (x2, y2) then ICP(x1, y1) ≤i ICP(x2, y2).

We say ICP is an approximation operator. It is also symmetric, in

the sense that ICP(x , y) = (IC lP(x , y), ICP(y , x)).

27

Properties of ICP

• ICP approximates TP :

ICP(x , x) = (TP(x),TP(x)) for any x ⊆ A.

• ICP is ≤i -monotonic:

if (x1, y1) ≤i (x2, y2) then ICP(x1, y1) ≤i ICP(x2, y2).

We say ICP is an approximation operator. It is also symmetric, in

the sense that ICP(x , y) = (IC lP(x , y), ICP(y , x)).

27

Properties of ICP

• ICP approximates TP :

ICP(x , x) = (TP(x),TP(x)) for any x ⊆ A.

• ICP is ≤i -monotonic:

if (x1, y1) ≤i (x2, y2) then ICP(x1, y1) ≤i ICP(x2, y2).

We say ICP is an approximation operator. It is also symmetric, in

the sense that ICP(x , y) = (IC lP(x , y), ICP(y , x)).

27

Kripke-Kleene Fixpoint

The ≤i -monotonicity is our indulgentia back into Tarski’s heaven:

Proposition
ICP has a least fixpoint, obtainable as

⋃
i≥0 IC

i
P(∅,A).

⋃
i≥0 IC

i
P(∅,A) is called the Kripke-Kleene Fixpoint

More good news:

Proposition
For any fixpoint of x = TP(x),

⋃
i≥0 IC

i
P(∅,A) ≤i (x , x).

Proposition⋃
i≥0 IC

i
P(∅,A) is consistent (i.e. where

⋃
i≥0 IC

i
P(∅,A) = (x , y),

x ⊆ y).

If (x , y) = ICP(x , y) then we call it a partial supported model.

28

Kripke-Kleene Fixpoint

The ≤i -monotonicity is our indulgentia back into Tarski’s heaven:

Proposition
ICP has a least fixpoint, obtainable as

⋃
i≥0 IC

i
P(∅,A).⋃

i≥0 IC
i
P(∅,A) is called the Kripke-Kleene Fixpoint

More good news:

Proposition
For any fixpoint of x = TP(x),

⋃
i≥0 IC

i
P(∅,A) ≤i (x , x).

Proposition⋃
i≥0 IC

i
P(∅,A) is consistent (i.e. where

⋃
i≥0 IC

i
P(∅,A) = (x , y),

x ⊆ y).

If (x , y) = ICP(x , y) then we call it a partial supported model.

28

Kripke-Kleene Fixpoint

The ≤i -monotonicity is our indulgentia back into Tarski’s heaven:

Proposition
ICP has a least fixpoint, obtainable as

⋃
i≥0 IC

i
P(∅,A).⋃

i≥0 IC
i
P(∅,A) is called the Kripke-Kleene Fixpoint

More good news:

Proposition
For any fixpoint of x = TP(x),

⋃
i≥0 IC

i
P(∅,A) ≤i (x , x).

Proposition⋃
i≥0 IC

i
P(∅,A) is consistent (i.e. where

⋃
i≥0 IC

i
P(∅,A) = (x , y),

x ⊆ y).

If (x , y) = ICP(x , y) then we call it a partial supported model.

28

Kripke-Kleene Fixpoint

The ≤i -monotonicity is our indulgentia back into Tarski’s heaven:

Proposition
ICP has a least fixpoint, obtainable as

⋃
i≥0 IC

i
P(∅,A).⋃

i≥0 IC
i
P(∅,A) is called the Kripke-Kleene Fixpoint

More good news:

Proposition
For any fixpoint of x = TP(x),

⋃
i≥0 IC

i
P(∅,A) ≤i (x , x).

Proposition⋃
i≥0 IC

i
P(∅,A) is consistent (i.e. where

⋃
i≥0 IC

i
P(∅,A) = (x , y),

x ⊆ y).

If (x , y) = ICP(x , y) then we call it a partial supported model.

28

Kripke-Kleene Fixpoint

The ≤i -monotonicity is our indulgentia back into Tarski’s heaven:

Proposition
ICP has a least fixpoint, obtainable as

⋃
i≥0 IC

i
P(∅,A).⋃

i≥0 IC
i
P(∅,A) is called the Kripke-Kleene Fixpoint

More good news:

Proposition
For any fixpoint of x = TP(x),

⋃
i≥0 IC

i
P(∅,A) ≤i (x , x).

Proposition⋃
i≥0 IC

i
P(∅,A) is consistent (i.e. where

⋃
i≥0 IC

i
P(∅,A) = (x , y),

x ⊆ y).

If (x , y) = ICP(x , y) then we call it a partial supported model.

28

Example: P = {p ←; q ← ¬p}

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)

29

The Approximation Operator ICP (for P = {p ← p,¬q})

ICP(x , y) = (IC lP(x , y), ICuP(x , y))

Kripke-Kleene Fixpoint

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)

30

The Approximation Operator ICP (for P = {p ← p,¬q})

ICP(x , y) = (IC lP(x , y), ICuP(x , y))

Kripke-Kleene Fixpoint

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)

30

The Approximation Operator ICP (for P = {p ← p,¬q})

ICP(x , y) = (IC lP(x , y), ICuP(x , y))

Partial Supported models

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)

30

The Approximation Operator ICP (for P = {p ← p,¬q})

ICP(x , y) = (IC lP(x , y), ICuP(x , y))

Supported models

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)

30

Example: P = {p ← ¬q; q ← ¬p}

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)

31

Example: P = {p ← ¬q; q ← ¬p}

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)

31

Stable Semantics

Example: Kripke-Kleene is rather weak

p ← ¬q; q ← q

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)

32

Example: Kripke-Kleene is rather weak

P = {p ← ¬q; q ← q}

Construction of the Kripke-Kleene fixpoint:

• ICP(∅, {p, q}) = (∅, {p, q}).

• Fixpoint reached.

Can’t get rid of the self-supporting atom q in the upper bound.

Assuming that no atom is certainly true, construct the smallest

upper bound possible:

ICuP(∅, ∅) = {p}
ICuP(∅, {p}) = {p}

As ICuP(∅, ·) is a ⊆-monotonic operator, it admits a least fixed

point.

33

Example: Kripke-Kleene is rather weak

P = {p ← ¬q; q ← q}

Construction of the Kripke-Kleene fixpoint:

• ICP(∅, {p, q}) = (∅, {p, q}).

• Fixpoint reached.

Can’t get rid of the self-supporting atom q in the upper bound.

Assuming that no atom is certainly true, construct the smallest

upper bound possible:

ICuP(∅, ∅) = {p}
ICuP(∅, {p}) = {p}

As ICuP(∅, ·) is a ⊆-monotonic operator, it admits a least fixed

point.

33

Example: Kripke-Kleene is rather weak

P = {p ← ¬q; q ← q}

Construction of the Kripke-Kleene fixpoint:

• ICP(∅, {p, q}) = (∅, {p, q}).

• Fixpoint reached.

Can’t get rid of the self-supporting atom q in the upper bound.

Assuming that no atom is certainly true, construct the smallest

upper bound possible:

ICuP(∅, ∅) = {p}
ICuP(∅, {p}) = {p}

As ICuP(∅, ·) is a ⊆-monotonic operator, it admits a least fixed

point.
33

Stable Operator

S(IC lP)(y) = lfp(IC lP(·, y))

S(ICuP)(x) = lfp(ICuP(x , ·)) = lfp(IC lP(·, x))

S(ICP)(x , y) = (S(IC lP)(y), S(ICuP)(x))

Example ({p ← ¬q; q ← q})

S(IC lP)({p, q}) = ∅ since:

IC lP(∅, {p, q}) = ∅: fixemptysetpoint reached.

S(ICuP)(∅) = {p} since:

ICuP(∅, ∅) = {p}
ICuP(∅, {p}) = {p}: fixpoint reached.

34

Stable Operator

S(IC lP)(y) = lfp(IC lP(·, y))

S(ICuP)(x) = lfp(ICuP(x , ·)) = lfp(IC lP(·, x))

S(ICP)(x , y) = (S(IC lP)(y), S(ICuP)(x))

Example ({p ← ¬q; q ← q})
S(IC lP)({p, q}) = ∅ since:

IC lP(∅, {p, q}) = ∅: fixemptysetpoint reached.

S(ICuP)(∅) = {p} since:

ICuP(∅, ∅) = {p}
ICuP(∅, {p}) = {p}: fixpoint reached.

34

Stable Operator

S(IC lP)(y) = lfp(IC lP(·, y))

S(ICuP)(x) = lfp(ICuP(x , ·)) = lfp(IC lP(·, x))

S(ICP)(x , y) = (S(IC lP)(y), S(ICuP)(x))

Example ({p ← ¬q; q ← q})
S(IC lP)({p, q}) = ∅ since:

IC lP(∅, {p, q}) = ∅: fixemptysetpoint reached.

S(ICuP)(∅) = {p} since:

ICuP(∅, ∅) = {p}
ICuP(∅, {p}) = {p}: fixpoint reached.

34

Stable Operator

S(IC lP)(y) = lfp(IC lP(·, y))

S(ICuP)(x) = lfp(ICuP(x , ·)) = lfp(IC lP(·, x))

S(ICP)(x , y) = (S(IC lP)(y), S(ICuP)(x))

Example ({p ← ¬q; q ← q})
S(IC lP)({p, q}) = ∅ since:

IC lP(∅, {p, q}) = ∅: fixemptysetpoint reached.

S(ICuP)(∅) = {p} since:

ICuP(∅, ∅) = {p}
ICuP(∅, {p}) = {p}: fixpoint reached. 34

Stable Operator

S(IC lP)(y) = lfp(IC lP(·, y))

S(ICuP)(x) = lfp(ICuP(x , ·)) = lfp(IC lP(·, x))

S(ICP)(x , y) = (S(IC lP)(y), S(ICuP)(x))

Example ({p ← ¬q; q ← q})
S(IC lP)({p, q}) = ∅ since:

IC lP(∅, {p, q}) = ∅: fixemptysetpoint reached.

S(ICuP)(∅) = {p} since:

ICuP(∅, ∅) = {p}
ICuP(∅, {p}) = {p}: fixpoint reached. 34

Stable Operator: Example {p ← ¬q; q ← q}

S(IC lP)({p, q}) = lfp(IC lP(·, {p, q}))

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)

35

Stable Operator: Example {p ← ¬q; q ← q}

S(ICuP)(∅) = lfp(ICuP(∅, ·))

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)

35

Stable Operator: Example {p ← ¬q; q ← q}

S(ICP)(∅, {p, q}) = (S(IC lP)({p, q}), S(ICuP)((∅))

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)

35

Stable Operator: Example {p ← ¬q; q ← q}

S(IC lP)({p}) = lfp(IC lP(·, {p}))

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)

35

Stable Operator: Example {p ← ¬q; q ← q}

S(ICuP)(∅) = lfp(ICuP(∅, ·))

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)

35

Stable Operator: Example {p ← ¬q; q ← q}

S(ICP)(∅, {p}) = (S(IC lP)({p}), S(ICuP)(∅))

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)

35

Stable Operator: Example {p ← ¬q; q ← q}

S(IC lP)({p}) = lfp(IC lP(·, {p}))

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)

35

Stable Operator: Example {p ← ¬q; q ← q}

S(ICuP)(x) = lfp(ICuP({p}, ·))

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)

35

Stable Operator: Example {p ← ¬q; q ← q}

S(ICP)({p}, {p}) = (S(IC lP)({p}), S(ICuP)({p}))

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)

35

Stable Operator and Well-Founded Model

S(IC lP)(y) = lfp(IC lP(·, y)) S(ICuP)(x) = lfp(ICuP(x , ·))

S(ICP)(x , y) = (S(IC lP)(y), S(ICuP)(x))

• S(ICP) is a ≤i -monotonic operator, so it admits a least fixpoint.

We call this the well-founded model, denoted WF(P).

• The well-founded model is more precise than the Kripke-Kleene

fixpoint: KK(P) ≤i WF(P).

• Any fixpoint of S(ICP) is a minimal model of P.

If (x , y) = S(ICP)(x , y), we call it a (partial) stable model.

If x = S(ICP)(x), we call it a stable model.

• If TP has a least fixpoint, it coincides with the well-founded

model.

36

Stable Operator and Well-Founded Model

S(IC lP)(y) = lfp(IC lP(·, y)) S(ICuP)(x) = lfp(ICuP(x , ·))

S(ICP)(x , y) = (S(IC lP)(y), S(ICuP)(x))

• S(ICP) is a ≤i -monotonic operator, so it admits a least fixpoint.

We call this the well-founded model, denoted WF(P).

• The well-founded model is more precise than the Kripke-Kleene

fixpoint: KK(P) ≤i WF(P).

• Any fixpoint of S(ICP) is a minimal model of P.

If (x , y) = S(ICP)(x , y), we call it a (partial) stable model.

If x = S(ICP)(x), we call it a stable model.

• If TP has a least fixpoint, it coincides with the well-founded

model.

36

Stable Operator and Well-Founded Model

S(IC lP)(y) = lfp(IC lP(·, y)) S(ICuP)(x) = lfp(ICuP(x , ·))

S(ICP)(x , y) = (S(IC lP)(y), S(ICuP)(x))

• S(ICP) is a ≤i -monotonic operator, so it admits a least fixpoint.

We call this the well-founded model, denoted WF(P).

• The well-founded model is more precise than the Kripke-Kleene

fixpoint: KK(P) ≤i WF(P).

• Any fixpoint of S(ICP) is a minimal model of P.

If (x , y) = S(ICP)(x , y), we call it a (partial) stable model.

If x = S(ICP)(x), we call it a stable model.

• If TP has a least fixpoint, it coincides with the well-founded

model.

36

Stable Operator and Well-Founded Model

S(IC lP)(y) = lfp(IC lP(·, y)) S(ICuP)(x) = lfp(ICuP(x , ·))

S(ICP)(x , y) = (S(IC lP)(y), S(ICuP)(x))

• S(ICP) is a ≤i -monotonic operator, so it admits a least fixpoint.

We call this the well-founded model, denoted WF(P).

• The well-founded model is more precise than the Kripke-Kleene

fixpoint: KK(P) ≤i WF(P).

• Any fixpoint of S(ICP) is a minimal model of P.

If (x , y) = S(ICP)(x , y), we call it a (partial) stable model.

If x = S(ICP)(x), we call it a stable model.

• If TP has a least fixpoint, it coincides with the well-founded

model.

36

Stable Operator: Example

p ← ¬q; q ← q

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)

37

Stable Operator: Example 2

P = {p ← ¬q; q ← ¬p; r ← r ; s ← ¬r}

• Kripke-Kleene fixpoint: (∅, {p, q, r , s}).

• Well-founded model: ({s}, {p, q, s}).

• Stable models: ({p, s}, {p, s}), ({q, s}, {q, s}).

38

Stable Semantics and Reducts

P
x

= {a← b1, . . . , bn |a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P

c1, . . . , cn 6∈ x}

Definition
x is a stable model of P if it is a minimal model of Px .

39

Stable Semantics and Reducts

P
x

= {a← b1, . . . , bn |a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P

c1, . . . , cn 6∈ x}

Definition
x is a stable model of P if it is a minimal model of Px .

Example (P = {p ← ¬p; q ← ¬p; p ← ¬q})
P
{q} = {p ←; q ←}. {q} is not a minimal model of P, thus {q} is

not a stable model.

P
{p} = {p ←}. {p} is a minimal model of P.{q} is not a minimal

model of P, thus {p} is a stable model.

39

Stable Semantics and Reducts

P
x

= {a← b1, . . . , bn |a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P

c1, . . . , cn 6∈ x}

Definition
x is a stable model of P if it is a minimal model of Px .

Proposition
S(IC lP)(y) is the set of minimal models of Py .

Proposition
(x , x) = S(ICP)(x , x) if and only if x is a stable model of P
(iff x = S(IC lP)(x)).

39

Approximation Fixpoint Theory

Recap

KK model
⋃

i≥0(ICP(∅,A))i WF model
⋃

i≥0((S(ICP)(∅,A))i

Partial Supported model

(x , y) = ICP(x , y)

Supported model

(x , x) ∈ ICP(x , x)

Partial stable model

(x , y) = S(ICP)(x , y)

Stable model

(x , x) ∈ S(ICP)(x , x)

Least fixpoint of TP

• Operator-based framework
• Non-monotonic operator TP ,

• a ≤i -monotonic approximation operator ICP ,

• and its stable variant S(ICP).

• Allow us to define semantics as fixpoints of these operators,
with attractive properties:

• KK and WF models exist, can be constructively found, and

• approximate any fixpoint of TP .

• This story can be told for a great number of formalisms. 40

Lattices, bilattices, operators

Given a lattice L = 〈L,≤〉.
Interested in operator OL : L → L and its fixpoints.

• (x1, y1) ≤i (x2, y2) iff x1 ≤ x2 and y1 ≥ y2,

• (x1, y1) ≤t (x2, y2) iff x1 ≤ x2 and y1 ≤ y2.

〈L2,≤i ,≤t〉 is called a bilattice. Approximate OL with an

approximation operator O : L2 → L2, which is ≤i -monotonic and

for which O(x , x) = (OL(x),OL(x)) for any x ∈ L.

Formalism Lattice Elements Order

Logic Programming Possible worlds ⊆
Default Logic and AEL Sets of possible worlds ⊇
Formal Argumentation Sets of arguments ⊆
Weighted ADFs Weighted worlds Pointwise comparison

SHACL Interpretations Truth order

41

Lattices, bilattices, operators

Given a lattice L = 〈L,≤〉.
Interested in operator OL : L → L and its fixpoints.

• (x1, y1) ≤i (x2, y2) iff x1 ≤ x2 and y1 ≥ y2,

• (x1, y1) ≤t (x2, y2) iff x1 ≤ x2 and y1 ≤ y2.

〈L2,≤i ,≤t〉 is called a bilattice. Approximate OL with an

approximation operator O : L2 → L2, which is ≤i -monotonic and

for which O(x , x) = (OL(x),OL(x)) for any x ∈ L.

Formalism Lattice Elements Order

Logic Programming Possible worlds ⊆
Default Logic and AEL Sets of possible worlds ⊇
Formal Argumentation Sets of arguments ⊆
Weighted ADFs Weighted worlds Pointwise comparison

SHACL Interpretations Truth order

41

Lattices, bilattices, operators

Given a lattice L = 〈L,≤〉.
Interested in operator OL : L → L and its fixpoints.

• (x1, y1) ≤i (x2, y2) iff x1 ≤ x2 and y1 ≥ y2,

• (x1, y1) ≤t (x2, y2) iff x1 ≤ x2 and y1 ≤ y2.

〈L2,≤i ,≤t〉 is called a bilattice. Approximate OL with an

approximation operator O : L2 → L2, which is ≤i -monotonic and

for which O(x , x) = (OL(x),OL(x)) for any x ∈ L.

Formalism Lattice Elements Order

Logic Programming Possible worlds ⊆
Default Logic and AEL Sets of possible worlds ⊇
Formal Argumentation Sets of arguments ⊆
Weighted ADFs Weighted worlds Pointwise comparison

SHACL Interpretations Truth order

41

Operator-Based Semantics for Dialects of Logic Programming

∨ Aggregates in the body: p ← #sum{2 : p; q : 1; r : 1} ≥ 2.

∨ Propositional formulas in the body: p ← q ∧ (r ∨ (s ∧ ¬t)).

∨ Disjunctions in the head: p ∨ q ← q ∧ (r ∨ (s ∧ ¬t)).

∨ Choice constructs in the head: #count{p; q; r} = 2← ¬r .

∨ DL-based logic programs: KC (x)← ¬p(X); C v D.

∨ Higher-order logic programs: S(P,Q)←; P(X)← ¬Q(X).

? Fuzzy logic programs: p(X)← 0.5 · (q(x) + r(X)).

? Probabilistic logic programs: 0.3 :: p(X).

? Hex-programs: tr(S ,P,O)← &RDF [uri](S ,P,O).

42

Operator-Based Semantics for other KR-formalisms

• autoepistemic logic [DMT03],

• default logic [DMT03],

• abstract argumentation [SW15],

• abstract dialectical frameworks [SW15],

• weighted abstract dialectical frameworks [Bog19],

• SCHACL [BJ21].

43

Operator-Based Studies

Top-Down approach:

• Instead of studying a concept for a specific framework, define

and study it for operators over a lattice (and their

approximations).

• We can then apply this concept to all formalisms that are or

can be captured in AFT.

Examples:

∨ Stratification [VGD06]

∨ Conditional Independence [Hey23]

∨ Knowledge Compilation [BVdB15]

∨ Groundedness [BVdB15]

∨ Strong equivalence [Tru06]

∨ Argumentative dialogues

[HA20]

? Belief dynamics

? Modular equivalence

? Neuro-symbolism 44

Round up

Course on Answer Set Programming

• UCT-students: 12-23rd February (Monday-Thursday).

• Non-UCT-students: recordings via NITheCS.

Course will have a more practical focus.

Topics:

• ASP syntax and semantics.

• Hierarchical and combinatorial modelling in ASP.

• Grounding and solving algorithms.

• Formal argumentation.

• Inductive logic programming (learning logic programs).

• . . .

45

Summary

• Operators as the core for understanding answer set semantics.

• Paved the road towards approximation fixpoint theory.

• Algebraic theory that allows language independent work on

KR.

• Requires some buy-in, but in my view a great bargain.

• Interested in cooperating? Questions on AFT? Come talk to

me.

46

Bibliography i

Theofanis I Aravanis and Pavlos Peppas.

Belief revision in answer set programming.

In Proceedings of the 21st Pan-Hellenic Conference on

Informatics, pages 1–5, 2017.

Bart Bogaerts and Maxime Jakubowski.

Fixpoint semantics for recursive shacl.

In 37th International Conference on Logic Programming, pages

41–47. Open Publishing Association, 2021.

47

Bibliography ii

Jonathan Ben-Naim, Salem Benferhat, Odile Papini, and Eric

Würbel.

An answer set programming encoding of prioritized

removed sets revision: application to gis.

In European Workshop on Logics in Artificial Intelligence,

pages 604–616. Springer, 2004.

Gerhard Brewka, Ilkka Niemelä, and Tommi Syrjänen.

Implementing ordered disjunction using answer set

solvers for normal programs.

In Logics in Artificial Intelligence: 8th European Conference,

JELIA 2002 Cosenza, Italy, September 23–26, 2002

Proceedings 8, pages 444–456. Springer, 2002.

48

Bibliography iii

Bart Bogaerts.

Weighted abstract dialectical frameworks through the

lens of approximation fixpoint theory.

In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 33, pages 2686–2693, 2019.

Bart Bogaerts and Guy Van den Broeck.

Knowledge compilation of logic programs using

approximation fixpoint theory.

Theory and Practice of Logic Programming, 15(4-5):464–480,

2015.

49

Bibliography iv

Marc Denecker, Victor Marek, and Miros law Truszczyński.

Approximations, stable operators, well-founded fixpoints

and applications in nonmonotonic reasoning.

In Logic-based Artificial Intelligence, volume 597 of The

Springer International Series in Engineering and Computer

Science, pages 127–144. Springer, 2000.

Marc Denecker, Victor Marek, and Miros law Truszczyński.

Uniform semantic treatment of default and

autoepistemic logics.

Artificial Intelligence, 143(1):79–122, 2003.

50

Bibliography v

Wolfgang Dvǒrák, Anna Rapberger, Johannes P Wallner, and

Stefan Woltran.

Aspartix-v19-an answer-set programming based system

for abstract argumentation.

In International Symposium on Foundations of Information and

Knowledge Systems, pages 79–89. Springer, 2020.

Melvin Fitting.

Bilattices are nice things.

In Self Reference, volume 178 of CSLI Lecture Notes, pages

53–77. CLSI Publications, 2006.

51

Bibliography vi

Jesse Heyninck and Ofer Arieli.

Argumentative reflections of approximation fixpoint

theory.

In Computational Models of Argument, pages 215–226. IOS

Press, 2020.

Jesse Heyninck.

An algebraic notion of conditional independence, and its

application to knowledge representation (preliminary

report).

2023.

52

Bibliography vii

Ignacio Huitzil, Giuseppe Mazzotta, Rafael Peñaloza,

Francesco Ricca, et al.

Asp-based axiom pinpointing for description logics.

In CEUR WORKSHOP PROCEEDINGS, volume 3515, pages

1–13. CEUR-WS, 2023.

Tarek Khaled and Belaid Benhamou.

An asp-based approach for attractor enumeration in

synchronous and asynchronous boolean networks.

arXiv preprint arXiv:1909.08251, 2019.

53

Bibliography viii

Isabelle Kuhlmann, Carl Corea, and John Grant.

Non-automata based conformance checking of

declarative process specifications based on asp.

In International Conference on Business Process Management,

pages 396–408. Springer, 2023.

Roland Kaminski, Javier Romero, Torsten Schaub, and Philipp

Wanko.

How to build your own asp-based system?!

Theory and Practice of Logic Programming, 23(1):299–361,

2023.

54

Bibliography ix

Isabelle Kuhlmann and Matthias Thimm.

Algorithms for inconsistency measurement using answer

set programming.

In 19th International Workshop on Non-Monotonic Reasoning

(NMR), pages 159–168, 2021.

Hannes Strass and Johannes Peter Wallner.

Analyzing the computational complexity of abstract

dialectical frameworks via approximation fixpoint theory.

Artificial Intelligence, 226:34–74, 2015.

55

Bibliography x

Terrance Swift.

Deduction in ontologies via asp.

In International Conference on Logic Programming and

Nonmonotonic Reasoning, pages 275–288. Springer, 2004.

Miros law Truszczyński.

Strong and uniform equivalence of nonmonotonic

theories–an algebraic approach.

Annals of Mathematics and Artificial Intelligence,

48(3-4):245–265, 2006.

56

Bibliography xi

Joost Vennekens, David Gilis, and Marc Denecker.

Splitting an operator: Algebraic modularity results for

logics with fixpoint semantics.

ACM Transactions on computational logic (TOCL),

7(4):765–797, 2006.

Allen Van Gelder, Kenneth A Ross, and John S Schlipf.

The well-founded semantics for general logic programs.

Journal of the ACM, 38(3):619–649, 1991.

57

	Syntax of Logic Programs
	Semantics of Positive Programs
	Semantics of Normal Logic Programs
	Stable Semantics
	Approximation Fixpoint Theory
	Round up

