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ASP is a popular declarative problem-solving paradigm

Efficient solvers exist

It's rule-based nature makes it attractive for critical domains

It has been utilised for:
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Motivation

« We study Answer-set Programming (ASP)

ASP is a popular declarative problem-solving paradigm

Efficient solvers exist

It's rule-based nature makes it attractive for critical domains

It has been utilised for:

E BH B e

ann?®

Medicine Scheduling Planning Logistics Pathfinding

Provided solutions still need to be explained
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a,V..Va,<b . ....,b notb, ,..,¢n0tb,

YT md

ap,...,a, by, ....b,and b, ., ..., b, are atoms

YT m

Atoms can be ground or have variables:

p color(C)
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Basics default negation

ASP programs are finite sets of rules: / l

a,V..Va,<b . ....,b notb, ,..,¢n0tb,
ap,...,a, by, ....b,and b, ., ..., b, are atoms
instantiated during grounding
Atoms can be ground or have variables: J
p color(C)

An interpretation I is a set of ground atoms, which satisfies a rule if:

whenever b, ,....b, € land b, ,...,b, & I, thena;, € I for some (1 <i < k)
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Pl:={ avVv..va<b.,...b, | aVv..vVa<b,,,..,b,nothb, ,,...,noth €P,

by tsonb, &1 )

Intuition: Assuming everything not in / is false, the rest is stable w.r.t. P

Example: Answer sets:
warhawk(X) <« republican(X), not pacifist(X) I, = { republican(nixon), quaker(nixon),
pacifist(X) <« quaker(X), not warhawk(X) ]
republic(nixon) «
quaker(nixon) <«
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Basics

I is an answer set of program P if it is a minimal model of the Gelfond-Lifschitz reduct

Pl:={ avVv..va<b.,...b, | aVv..vVa<b,,,..,b,nothb, ,,...,noth €P,

bm+1, s ooy

b, &1 }

Intuition: Assuming everything not in / is false, the rest is stable w.r.t. P

Example:
warhawk(X)

pacifist(X)
republic(nixon)
quaker(nixon)

Informatics

—
-
-
—

republican(X), not pacifist(X)
quaker(X), not warhawk(X)

Answer sets:

I, = { republican(nixon), quaker(nixon),

}

I, = { republican(nixon), quaker(nixon),
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Facts

node(1), node(2), node(3),
node(4), node(S), edge(1,2),
edge(2,3), edge(2,5), edge(3,5),
edge(4,5), edge(1,4)

ASP Encoding

r(X) VvV gX) Vv b(X) « node(X)
— edge(X,Y), r(X), r(Y)
< edge(X,Y), g(X), g(Y)
« edge(X,Y), b(X), b(Y)

= , Yy
Informatics kbs™ logics [

Sy



Answer-set Programming (ASP)
Methodology

Combinatorial Problem

Facts
node(1), node(2), node(3),

node(4), node(S), edge(1,2),
edge(2,3), edge(2.5), edge(3,5). ASP Solver
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ASP Encoding
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Answer-set Programming (ASP)
Methodology

Combinatorial Problem Solution

Answer set
g(1),b(2),r(3),r4),g(5)

v

Answer set
j r(1),8(2), 7(3), b(4), g(5)

Facts
node(1), node(2), node(3),
node(4), node(S), edge(1,2),
edge(2,3), edge(2,5), edge(3,5),
edge(4,5), edge(1,4)

ASP Encoding /

r(X) VvV gX) Vv b(X) « node(X)

~Sh

Solution

D' Answer set
> &
g(1),7(2),b(3),r(4),r(5)

ASP Solver

— edge(X,Y), r(X), r(Y)
« edge(X,Y), g(X), g(Y)
—edge(X,Y), b(X), b(Y)
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Choice & Aggregates

{colored(N,C) : color(C)} :- node(N)

#count{ E : empl(E), cert(E,C) }

External Computations

Custom Theories

D 1<i<n @iTi <k

« Choice rules & Aggregates

- Syntactic sugar
- but very useful

« HEX programs / clingo

* ASP modulo Theories
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Extensions

« Choice rules & Aggregates
- Syntactic sugar

- but very useful

Choice & Aggregates .
« HEX programs / clingo

{colored(N,C) : color(C)} :- node(N)

« ASP modulo Theories
- Linear Constraints (CASP)
- Difference Logic

#count{ E : empl(E), cert(E,C) }

External Computations
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Choice & Aggregates
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Extensions

Choice rules & Aggregates
- Syntactic sugar
- but very useful

Choice & Aggregates

HEX programs / clingo

{colored(N,C) : color(C)} :- node(N)

ASP modulo Theories
- Linear Constraints (CASP)
- Difference Logic

#count{ E : empl(E), cert(E,C) }

Equilibrium Logic External Computations

pVqg— 1, r\Ns—q,
T, p A\ 8§, W Custom Theories
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Answer-set Programming

Extensions

Equilibrium Logic

pVqg— 1, r\Ns—q,
r,p N\ 8, "w

Nnformatics

Probabilistic Reasoning

Custom Theories

D 1<i<n @iTi <k

Choice & Aggregates

{colored(N,C)

#count{ E :

: color(C)} :- node(N)

empl (E) , cert(E,C) }

Choice rules & Aggregates
- Syntactic sugar
- but very useful

HEX programs / clingo

ASP modulo Theories
- Linear Constraints (CASP)

- Difference Logic

Equilibrium Logic

NeurASP
| PMLN
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warhawk(X) <« republican(X), not pacifist(X)
. pacifist(X) « quaker(X), not warhawk(X)
For consistent programs

republic(nixon) <«

« Offline justification graphs / xASP quaker(nixon) «

« Causal explanations I, = { republican(nixon), quaker(nixon),
. Witnesses warhawk(nixon) }
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Supported language features vary

Some common principles
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Example:
Explanations

warhawk(X) <« republican(X), not pacifist(X)

pacifist(X) « quaker(X), not warhawk(X)

For consistent programs republic(nixon)

« Offline justification graphs / xASP quaker(nixon) «

« Causal explanations I, = { republican(nixon), quaker(nixon),
. Witnesses warhawk(nixon) }

* xclingo

warhawk(nixon)

Supported language features vary

Some common principles republican(nixon)
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Answer-set Programming

Explanations

For consistent programs

« Offline justification graphs / xASP
« Causal explanations

» Witnesses

* xclingo

Supported language features vary
Some common principles
Differences in how negation is handled

Explanations are not always satisfactory

Nnformatics

Example:

warhawk(X) <« republican(X), not pacifist(X)
pacifist(X) « quaker(X), not warhawk(X)

republic(nixon) <«

quaker(nixon) <«

I, = { republican(nixon), quaker(nixon),

warhawk(nixon) }

warhawk(nixon)

republican(nixon)

T

T
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Approaches are based on: n.
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Approaches are based on:
« Giving reasons as to why each interpretation is not an answer-set
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Supported language features again vary
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Answer-set Programming

Explanations

Explanations for inconsistent programs are mostly considered for debugging

Approaches are based on:
« Giving reasons as to why each interpretation is not an answer-set

« Minimally inconsistent sets of rules

« Interactive, user-guided solving

Supported language features again vary

. . O
The produced explanations are very technical! T
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Most existing approaches lack support for language extensions

How can variables, external computations, theories or neuro-symbolic extensions be included?

To which detail should those extensions be involved?

Nonmonotonicity poses challenges

Miller? argues that explanations should be causal, interactive and contrastive

1 Tim Miller (2019): Explanation in artificial intelligence: Insights from the social sciences, Artificial Intelligence

. Y
nformatics kbs’™ Jogics

Systems Group




Open Problems

+ Most existing approaches lack support for language extensions

- How can variables, external computations, theories or neuro-symbolic extensions be included?
- To which detail should those extensions be involved?
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- Miller™ argues that explanations should be causal, interactive and contrastive

Contrastive Question: Why P and not Q7
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Open Problems

Most existing approaches lack support for language extensions

How can variables, external computations, theories or neuro-symbolic extensions be included?

To which detail should those extensions be involved?

Nonmonotonicity poses challenges

Miller? argues that explanations should be causal, interactive and contrastive

Contrastive Question: Why P and not Q7
Example:

Gikmmd Classifier

1 Tim Miller (2019): Explanation in artificial intelligence: Insights from the social sciences, Artificial Intelligence
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Open Problems

Most existing approaches lack support for language extensions

How can variables, external computations, theories or neuro-symbolic extensions be included?

To which detail should those extensions be involved?

Nonmonotonicity poses challenges

Miller? argues that explanations should be causal, interactive and contrastive

Contrastive Question: Why P and not Q7
Example:

= —> ENCEESTCIgN —> Crow

1 Tim Miller (2019): Explanation in artificial intelligence: Insights from the social sciences, Artificial Intelligence
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Open Problems
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- Most existing approaches lack support for language extensions

- How can variables, external computations, theories or neuro-symbolic extensions be included?
- To which detail should those extensions be involved?

- Nonmonotonicity poses challenges

- Miller® argues that explanations should be causal, interactive and contrastive

Contrastive Question: Why P and not Q7

Example: Why crow and not magpie?
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- Most existing approaches lack support for language extensions

- How can variables, external computations, theories or neuro-symbolic extensions be included?
- To which detail should those extensions be involved?

- Nonmonotonicity poses challenges

- Miller® argues that explanations should be causal, interactive and contrastive

Contrastive Question: Why P and not Q7

Example: Why crow and not magpie?
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- Most existing approaches lack support for language extensions

- How can variables, external computations, theories or neuro-symbolic extensions be included?
- To which detail should those extensions be involved?

- Nonmonotonicity poses challenges

- Miller® argues that explanations should be causal, interactive and contrastive

Contrastive Question: Why P and not Q7

Example: Why crow and not magpie?

« Black beak
« Feathers
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- How can variables, external computations, theories or neuro-symbolic extensions be included?
- To which detail should those extensions be involved?

- Nonmonotonicity poses challenges

- Miller® argues that explanations should be causal, interactive and contrastive

Contrastive Question: Why P and not Q7

Example: Why crow and not magpie?

P —> BNGEESIN —> Crow
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Open Problems

@

- Most existing approaches lack support for language extensions

- How can variables, external computations, theories or neuro-symbolic extensions be included?
- To which detail should those extensions be involved?

- Nonmonotonicity poses challenges

- Miller® argues that explanations should be causal, interactive and contrastive

Contrastive Question: Why P and not Q7

Example: Why crow and not magpie?

—> SERSIiEIa —» Crow

gewy © \Wing colour

- How should we approach contrastive explanation for ASP?

1 Tim Miller (2019): Explanation in artificial intelligence: Insights from the social sciences, Artificial Intelligence
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Research Goals

 Explaining ASP extensions and advanced features

- White-box, grey-box, black-box

- Contrastive explanation through counterfactual reasoning
 Explaining instead of debugging inconsistency
 Explainability in Equilibrium Logic

- Proof systems

« Towards practical algorithms

Methodology
@
Formal concepts Analysis Prototypes

Informatics



Research Status

Publications

Explaining Answer-Set Programs with Abstract Constraint Atoms

Thomas Eiter and Tobias Geibinger
32rd International Joint Conference on Artificial Intelligence (IJCAI 2023)
Contributions: Formal notions of justification for ASP with choice and aggregates, Complexity Analysis
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Explaining Answer-Set Programs with Abstract Constraint Atoms

We introduced justifications for ASP programs with Abstract Constraint Atoms:

A = (D, C)
X

Domain C c2P
An interpretation I satisfies A wheneverIN D € C
Choice rules and aggregates are captured by abstract constraint atoms

Example:
I=1{a,b,c} IEA

#sum{2:a,1:b,1:c} > 1
Model-based justifications:

1

A =({a,b,c},{{a},{b,c},{a,b},{a,c},{a,b,c}})
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A = (D, C)
X
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An interpretation I satisfies A wheneverIN D € C
Choice rules and aggregates are captured by abstract constraint atoms

Example:
I=1{a,b,c} IEA

Model-based justifications:
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A =({a,b,c},{{a},{b.c}.{a,b},{a,c},{a,b,c}})

#sum{2:a,1:b,1:c} > 1

: Yy
nformatics kbs® |ogics

Systems Group




Research Status

Explaining Answer-Set Programs with Abstract Constraint Atoms

We introduced justifications for ASP programs with Abstract Constraint Atoms:

A = (D, C)
X

Domain C c2P
An interpretation I satisfies A wheneverIN D € C
Choice rules and aggregates are captured by abstract constraint atoms

Example:
I=1{a,b,c} IEA
#sum{2:a,1:b,1:c} > 1
Model-based justifications:

1 ({a}, @) ({b,c}, @)
A =({a,b,c},{{a},{b,c},{a,b},{a,c},{a,b,c}})

— : Y
Informatics kbs’ logics



Research Status

Explaining Answer-Set Programs with Abstract Constraint Atoms

We introduced justifications for ASP programs with Abstract Constraint Atoms:

A = (D, C)
X

Domain C c2P
An interpretation I satisfies A wheneverIN D € C
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Explaining Answer-Set Programs with Abstract Constraint Atoms

We introduced justifications for ASP programs with Abstract Constraint Atoms:

A = (D, C)
X

Domain C c2P
An interpretation I satisfies A wheneverIN D € C

Choice rules and aggregates are captured by abstract constraint atoms

Example:
I={a,b,c} IFA
#sum{2:a,1:b,1:c} > 1
Model-based justifications:
t ({a}, @) ({b,c}, @)
A =({a,b,c},{{a},{b,c},{a,b}.{a,c},{a,b,c}}) \ /

minimal partial models
We also define rule-based justifications which take the application of rules into account
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Publications

A Logic-based Approach to Contrastive Explainability for Neurosymbolic Visual Question Answering
Thomas Eiter, Tobias Geibinger, Nelson Higuera Ruiz and Johannes Oetsch

32rd International Joint Conference on Atrtificial Intelligence (IJCAI 2023)

Contributions: Contrastive explanation approach for the Visual Question Answering domain

Knowledge-Based
Systems Group
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VQA Framework using ASP

NSQVASP

Neural Module FAC””"
o
Object ans(no)
Recognition Logical Module biect L. 4
(YOLOVS) objec Tom?sszon( )
Theory Abduction optimization : 10
(ASP) (ASP) ans(no)
color_change(4, green, brown,)
Is there an object of the same ?:’L;erzit:]c;n L Arswer- optimization : 5
? S
color as the small one? (LSTM) Yes OPTIMUM FOUND
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A Logic-based Approach to Contrastive Explainability for Neurosymbolic VOQA

VQA Framework using ASP

NSQVASP

Neural Module

Object
Recognition
(YOLOvV5)

Question
Parsing
(LSTM)

Is there an object of the same
color as the small one?

Example:

Nnformatics

Logical Module

Theory
(ASP)

L Answer: |

Yes

Foil:
No

Abduction
(ASP)

ans(no)

object_omission(4)
optimization : 10

ans(no)

color_change(4, green, brown,)
optimization : 5

OPTIMUM FOUND

kbs®
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VQA Framework using ASP

NSQVASP

Neural Module [Fellk
No
Object ans(no)
Recognition Logical Module biect L. 4
(YOLOVS) ohjest.ownission(d)
Theory Abduction optimization : 10
(ASP) (ASP) ans(no)
color_change(4, green, brown,)
Is there an object of the same %:er:it:;n L Answer: optimization : 5
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color as the small one? (LSTM) Yes OPTIMUM FOUND

Example:

What size is the cylinder that is left of the brown
metal thing that is left of the big sphere?
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VQA Framework using ASP

NSQVASP

Neural Module [Fellk
No
Object ans(no)
Recognition Logical Module biect L. 4
(YOLOVS) ohjest.ownission(d)
Theory Abduction optimization : 10
(ASP) (ASP) ans(no)
color_change(4, green, brown,)
Is there an object of the same %:er:it:;n L Answer: optimization : 5
? o
color as the small one? (LSTM) Yes OPTIMUM FOUND

Example:

What size is the cylinder that is left of the brown
metal thing that is left of the big sphere?

Answer: small
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VQA Framework using ASP

NSQVASP
Neural Module [Fellk
No
Object ans(no)
Recognition Logical Module biect L. 4
(YOLOVS) ohjest.ownission(d)
Theory Abduction optimization : 10
(ASP) (ASP) ans(no)
color_change(4, green, brown,)
Is there an object of the same %:er:it:;n L Answer: optimization : 5
2 N o
color as the small one? (LSTM) Yes OPTIMUM FOUND

Example:

What size is the cylinder that is left of the brown
metal thing that is left of the big sphere?

Answer: small

Why small and not large?
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Theory Abduction optimization : 10
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Example:
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metal thing that is left of the big sphere?

Answer: small

Why small and not large?
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Publications

Contrastive Explanations for Answer-Set Programs

Thomas Eiter, Tobias Geibinger and Johannes Oetsch
18th Edition of the European Conference on Logics in Artificial Intelligence (JELIA 2023)
Contributions: Problem independent formulation of contrastive explanation for ASP including study of complexity
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Contrastive Explanations for Answer-Set Programs

We consider the following setting:

ASP Program P

bird < feathers, beak, shape

crow < bird, darkwings

magpie < bird, whitewings

feathers, beak, shape, darkwings

Nnformatics

Answer-Set [

crow, feathers, beak, shape, darkwings

ECI

Explanandum

kbs®
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Research Status

Contrastive Explanations for Answer-Set Programs

We consider the following setting:

ASP Program P

bird < feathers, beak, shape

Answer-Set [
crow, feathers, beak, shape, darkwings

crow < bird, darkwings l

magpie < bird, whitewings

feathers, beak, shape, darkwings

ECI Fnl=g
Explanandum Foil
Why E rather than F?

We want to find a program P’ with I’ € AS(P’) suchthat F C I'and E € I’
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Next Steps

Continue investigation of contrastive explanation

[~

« Sharpen definitions and theoretical foundation

« Encodings and/or algorithms 1010
’ ° 1010

Study how extensions can be incorporated in the explanations
« white-box, black-box, grey-box _’ﬂ_’

Development of a prototype using contrastive and non-contrastive explanations 'ﬁ/

interactively
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