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Logic Programming

• Specific, powerful family of languages for knowledge

representation (problems up to second level of polynomial

hierarchy).

• Efficient, user-friendly solvers (clingo1, DLV) and tools.2

• Hallmark of the declarative programming approach: describe a

problem (without having to describe how to find solutions).

node(1..6).

edge(1,2;1,3;1,4;2,4;2,5;2,6;3,1;3,4;3,5;4,1).

col(r). col(g). col(b).

{ color(X,C) : col(C) } =1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).
1https://potassco.org/clingo/run/
2https://potassco.org/related/ and their weekly seminar.
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Example Applications: Student Projects

• Puzzles and games:

• Rush hour

• Rubics

• Futoshiki

• Kakurasu

• IQ Puzzler Pro

• Generating healthy diets.

• Procedural content generation.

• Parsing grammatical structure of Latin.

• Minimum Sum Partition Problem.
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Example Applications: Knowledge Representation

• Solvers or reasoners for:

• Formal argumentation [DRWW20]

• AGM Belief Revision [AP17, BNBPW04]

• Boolean networks [KB19]

• Ordered disjunction [BNS02]

• Description Logics [Swi04]

• Inconsistency Measures [KT21]

• Linear temporal logic [KCG23]

• Logic programming (!?) [KRSW23]

• Axiom pinpointing in ontologies [HMP+23]

• . . .
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The ASP-workflow

Program

Grounder

Propositional Program

Solver

Answer Sets

penguin(tweety).

bird(zazu).

bird(X)← penguin(X).

flies(X)← bird(X), ¬ ab(X).

ab(X)← penguin(X).

penguin(tweety).

bird(zazu).

bird(tweety)← penguin(tweety).

flies(tweety)← bird(tweety), ¬ ab(tweety).

ab(tweety)← penguin(tweety).

bird(zazu)← penguin(zazu).

flies(zazu)← bird(zazu), ¬ ab(zazu).

ab(zazu)← penguin(zazu).

{
penguin(tweety) bird(tweety) ab(tweety)

bird(zazu) bird(zazu) flies(zazu)

}
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The ASP-workflow

Focus of today:

Propositional Program
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What are answer sets and what is so special about them?
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{
penguin(tweety) bird(tweety) ab(tweety)
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What are answer sets and what is so special about them?†

†Interested in other aspects of logic programming? I’ll see you in a week or

take a look at https://teaching.potassco.org/. 5
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Goals and Structure

• Provide a gentle introduction to the semantics of logic
programming:

• Supported models

• Kripke-Kleene models

• Stable models

• Well-founded model

• Illustrate the operator-based approach to KR with a
paradigmatic example.

• Basic constructions of approximation fixpoint theory (for logic

programs).

• From logic programming to operators.
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Almost nothing of this is my work

• Operator-based approach has driven logic programming since

its inception [VGRS91, Fit06].

• Studied algebraically by Denecker, Marek and Truszczyński

[DMT00].

• I extended and worked in this algebraic framework with Ofer

Arieli and Bart Bogaerts.
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Goals and Structure

Syntax of Logic Programs

Semantics of Positive Programs

Semantics of Normal Logic Programs

Stable Semantics

Approximation Fixpoint Theory

Round up
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Syntax of Logic Programs



Syntax of Logic Programs

Set of atoms A = {a, b, c , p, q, r , a1, a2, . . .}

a← b1, . . . , bn,¬c1, . . . ,¬cm

• Program is a set of rules.

• Rule is positive if m = 0.

• Program is positive if all the rules are positive.
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Semantics of Positive Programs



What are the semantics of logic programs?

p ← q.

Classical models? ∅, {p}, {p, q}.

Notice: a formula follows from every classical model if it follows

from ∅.

∅

{p} {q}

{p, q}
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What are the semantics of logic programs?
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TP-operator

TP : ℘(AP) 7→ ℘(AP)

TP(x) = {a | a← b1, . . . , bn ∈ P and b1, . . . , bn ∈ x}

Example

P = {p ← q., q ← .}

x ∅ {p} {q} {p, q}
TP(x) {q} {q} {p, q} {p, q}

∅

{p} {q}

{p, q}
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Models and Fixpoints

Definition
x is a post-fixpoint of TP if TP(x) ⊆ x.

Intuition: everything I can derive from x using P is in x .

Models of P.

Definition
x is a fixpoint of TP if TP(x) = x.

Intuition: same, plus everything in x is derivable.

Supported models of P.

Example

P = {p ← q.}

∅

{p} {q}

{p, q}
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Definition
x is a fixpoint of TP if TP(x) = x.
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Models and Fixpoints

• For positive programs, TP has a unique least fixpoint x .

• It is also the least pre-fixpoint.

• We can compute it by iterating TP starting from ∅:
TP(. . .TP(∅) . . .) =

⋃
i≥0 T i

P(∅)
And this is possible in polynomial time.

14



Models and Fixpoints

• For positive programs, TP has a unique least fixpoint x .

• Any fixpoint y of TP will be a superset: x ⊆ y .
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Models and Fixpoints

• For positive programs, TP has a unique least fixpoint x .

• Any fixpoint y of TP will be a superset: x ⊆ y .

• It is also the least pre-fixpoint.

• Any pre-fixpoint y of TP will be a superset: x ⊆ y .

• P has a least model,

i.e. any model of P is included in y .

• If something follows from every model of P, it follows from x .

• We can compute it by iterating TP starting from ∅:
TP(. . .TP(∅) . . .)
And this is possible in polynomial time.

Underlying result: A ⊆-monotonic operator over a complete

lattice admits a least fixpoint.
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Least fixpoint computation

P = {p ← . q ← p. r ← p, q.}

∅

{p} {q}{r}

{p, q}{p, r} {q, r}

{p, q, r}
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{p, q}{p, r} {q, r}

{p, q, r}

15



Least fixpoint 6= unique fixpoint

Example (P = {p ← p.})

∅

{p} {q}

{p, q}
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Semantics of Normal Logic

Programs



Enters Negation

p ← ¬q

How to extend our operator?

Easy:

TP(x) = {a | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P, and

b1, . . . , bn ∈ x , and c1, . . . , cm 6∈ x}

∅

{p} {q}

{p, q}
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Great, thanks for your attention

18



Great, thanks for your attention

P = {p ← ¬p}

∅

{p} {q}

{p, q}
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No unique fixpoint

P = {p ← ¬q; q ← ¬p}

∅

{p} {q}

{p, q}
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Problems with negation

• There might not be a fixpoint.

• There might be multiple minimal fixpoints.

• We don’t know how to find fixpoints.

20



Problems with negation

• There might not be a fixpoint.

• There might be multiple minimal fixpoints.
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Problems with negation

• There might not be a fixpoint.

• There might be multiple minimal fixpoints.

• We don’t know how to find fixpoints.

• Anyone sees what went wrong with our operator?

⇒ It is not a monotonic operator

∅

{p} {q}

{p, q}

20



Approximations

• Pairs of sets of atoms (x , y).

• x contains all atoms that are definitely true.

• y contains all atoms that are possibly true.

• How to compare such pairs of sets?

• (x1, y1) ≤t (x2, y2) if x1 ⊆ x2 and y1 ⊆ y2.

• (x1, y1) ≤i (x2, y2) if x1 ⊆ x2 and y2 ⊆ y1.

Example
({p}, {p, q}): p is true and q can be true.

({p}, {p}) ≤t ({p}, {p, q})
({p}, {p, q}) ≤i ({p}, {p})
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Graphical Depiction

∅

{p} {q}

{p, q}

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅) ≤i

22



Graphical Depiction

∅

{p} {q}

{p, q}

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅) ≤i

22



Graphical Depiction

∅

{p} {q}

{p, q}

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅) ≤i

22



Graphical Depiction

∅

{p} {q}

{p, q}

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅) ≤i

22



Approximations as Four-Valued Interpretations

≤i

≤t

U

F T

C

• −F = T, −T = F, −U = U and −C = C

• (x , y)(p) =


T if p ∈ x and p ∈ y ,

U if p 6∈ x and p ∈ y ,

F if p 6∈ x and p 6∈ y ,

C if p ∈ x and p 6∈ y .

• (x , y)(¬φ) = −(x , y)(φ),

• (x , y)(ψ ∧ φ) = lub≤t{(x , y)(φ), (x , y)(ψ)},
• (x , y)(ψ ∨ φ) = glb≤t{(x , y)(φ), (x , y)(ψ)}.

Example
({p}, {p, q})(p) = T ({p}, {p, q})(q) = U ({p}, {p, q})(r) = F.

({p}, {p, q})(¬p) = F ({p}, {p, q})(¬q) = U

({p}, {p, q})(p ∧ q) = U ({p}, {p, q})(q ∨ r) = U 23



Approximating TP (from below)

ICP : A×A 7→ A×A

We input an approximation and output an approximation.

IC lP(x , y) = {a ∈ A | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P,
b1, . . . , bn ∈ x and c1, . . . , cm 6∈ y}

or, equivalently

IC lP(x , y) = {a ∈ A | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P,
(x , y)(b1 ∧ . . . . . . bn ∧ ¬c1 ∧ . . . ∧ ¬cm) ∈ {T,C}}

Example ({p ← p,¬q})
IC lP({p}, {p, q}) = ∅
IC lP({p}, {p}) = {p}
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Approximating TP (from above)

ICP : A×A 7→ A×A

We input an approximation and output an approximation.

ICuP(x , y) = {a ∈ A | a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P,
b1, . . . , bn ∈ y and c1, . . . , cm 6∈ x}
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The Approximation Operator ICP (for P = {p ← p,¬q})

ICP(x , y) = (IC lP(x , y), ICuP(x , y))

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)
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Properties of ICP

• ICP approximates TP :

ICP(x , x) = (TP(x),TP(x)) for any x ⊆ A.

• ICP is ≤i -monotonic:

if (x1, y1) ≤i (x2, y2) then ICP(x1, y1) ≤i ICP(x2, y2).

We say ICP is an approximation operator. It is also symmetric, in

the sense that ICP(x , y) = (IC lP(x , y), ICP(y , x)).

27
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Kripke-Kleene Fixpoint

The ≤i -monotonicity is our indulgentia back into Tarski’s heaven:

Proposition
ICP has a least fixpoint, obtainable as

⋃
i≥0 IC

i
P(∅,A).

⋃
i≥0 IC

i
P(∅,A) is called the Kripke-Kleene Fixpoint

More good news:

Proposition
For any fixpoint of x = TP(x),
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Example: P = {p ←; q ← ¬p}

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)

29



The Approximation Operator ICP (for P = {p ← p,¬q})

ICP(x , y) = (IC lP(x , y), ICuP(x , y))

Kripke-Kleene Fixpoint

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)
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The Approximation Operator ICP (for P = {p ← p,¬q})

ICP(x , y) = (IC lP(x , y), ICuP(x , y))

Supported models
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Example: P = {p ← ¬q; q ← ¬p}
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Example: P = {p ← ¬q; q ← ¬p}

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})
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Stable Semantics



Example: Kripke-Kleene is rather weak

p ← ¬q; q ← q

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)
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Example: Kripke-Kleene is rather weak

P = {p ← ¬q; q ← q}

Construction of the Kripke-Kleene fixpoint:

• ICP(∅, {p, q}) = (∅, {p, q}).

• Fixpoint reached.

Can’t get rid of the self-supporting atom q in the upper bound.

Assuming that no atom is certainly true, construct the smallest

upper bound possible:

ICuP(∅, ∅) = {p}
ICuP(∅, {p}) = {p}

As ICuP(∅, ·) is a ⊆-monotonic operator, it admits a least fixed

point.
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Stable Operator

S(IC lP)(y) = lfp(IC lP(·, y))

S(ICuP)(x) = lfp(ICuP(x , ·)) = lfp(IC lP(·, x))

S(ICP)(x , y) = (S(IC lP)(y), S(ICuP)(x))

Example ({p ← ¬q; q ← q})

S(IC lP)({p, q}) = ∅ since:

IC lP(∅, {p, q}) = ∅: fixemptysetpoint reached.

S(ICuP)(∅) = {p} since:

ICuP(∅, ∅) = {p}
ICuP(∅, {p}) = {p}: fixpoint reached.
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Stable Operator: Example {p ← ¬q; q ← q}

S(IC lP)({p, q}) = lfp(IC lP(·, {p, q}))

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)
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Stable Operator: Example {p ← ¬q; q ← q}
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Stable Operator: Example {p ← ¬q; q ← q}
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Stable Operator: Example {p ← ¬q; q ← q}

S(ICuP)(x) = lfp(ICuP({p}, ·))
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Stable Operator: Example {p ← ¬q; q ← q}

S(ICP)({p}, {p}) = (S(IC lP)({p}), S(ICuP)({p}))
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Stable Operator and Well-Founded Model

S(IC lP)(y) = lfp(IC lP(·, y)) S(ICuP)(x) = lfp(ICuP(x , ·))

S(ICP)(x , y) = (S(IC lP)(y), S(ICuP)(x))

• S(ICP) is a ≤i -monotonic operator, so it admits a least fixpoint.

We call this the well-founded model, denoted WF(P).

• The well-founded model is more precise than the Kripke-Kleene

fixpoint: KK(P) ≤i WF(P).

• Any fixpoint of S(ICP) is a minimal model of P.

If (x , y) = S(ICP)(x , y), we call it a (partial) stable model.

If x = S(ICP)(x), we call it a stable model.

• If TP has a least fixpoint, it coincides with the well-founded

model.
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Stable Operator: Example

p ← ¬q; q ← q

(∅, {p, q})

({p}, {p, q})({q}, {p, q})(∅, {p})(∅, {q})

({p, q}, {p, q})({p}, {p})({q}, {q})(∅, ∅)

({p, q}, {p})({p}, ∅)({q}, ∅) ({p, q}, {q})

({p, q}, ∅)
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Stable Operator: Example 2

P = {p ← ¬q; q ← ¬p; r ← r ; s ← ¬r}

• Kripke-Kleene fixpoint: (∅, {p, q, r , s}).

• Well-founded model: ({s}, {p, q, s}).

• Stable models: ({p, s}, {p, s}), ({q, s}, {q, s}).
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Stable Semantics and Reducts

P
x

= {a← b1, . . . , bn |a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P

c1, . . . , cn 6∈ x}

Definition
x is a stable model of P if it is a minimal model of Px .
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Stable Semantics and Reducts

P
x

= {a← b1, . . . , bn |a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P

c1, . . . , cn 6∈ x}

Definition
x is a stable model of P if it is a minimal model of Px .

Example (P = {p ← ¬p; q ← ¬p; p ← ¬q})
P
{q} = {p ←; q ←}. {q} is not a minimal model of P, thus {q} is

not a stable model.

P
{p} = {p ←}. {p} is a minimal model of P.{q} is not a minimal

model of P, thus {p} is a stable model.
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Stable Semantics and Reducts

P
x

= {a← b1, . . . , bn |a← b1, . . . , bn,¬c1, . . . ,¬cm ∈ P

c1, . . . , cn 6∈ x}

Definition
x is a stable model of P if it is a minimal model of Px .

Proposition
S(IC lP)(y) is the set of minimal models of Py .

Proposition
(x , x) = S(ICP)(x , x) if and only if x is a stable model of P
(iff x = S(IC lP)(x)).
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Approximation Fixpoint Theory



Recap

KK model
⋃

i≥0(ICP(∅,A))i WF model
⋃

i≥0((S(ICP)(∅,A))i

Partial Supported model

(x , y) = ICP(x , y)

Supported model

(x , x) ∈ ICP(x , x)

Partial stable model

(x , y) = S(ICP)(x , y)

Stable model

(x , x) ∈ S(ICP)(x , x)

Least fixpoint of TP

• Operator-based framework
• Non-monotonic operator TP ,

• a ≤i -monotonic approximation operator ICP ,

• and its stable variant S(ICP).

• Allow us to define semantics as fixpoints of these operators,
with attractive properties:

• KK and WF models exist, can be constructively found, and

• approximate any fixpoint of TP .

• This story can be told for a great number of formalisms. 40



Lattices, bilattices, operators

Given a lattice L = 〈L,≤〉.
Interested in operator OL : L → L and its fixpoints.

• (x1, y1) ≤i (x2, y2) iff x1 ≤ x2 and y1 ≥ y2,

• (x1, y1) ≤t (x2, y2) iff x1 ≤ x2 and y1 ≤ y2.

〈L2,≤i ,≤t〉 is called a bilattice. Approximate OL with an

approximation operator O : L2 → L2, which is ≤i -monotonic and

for which O(x , x) = (OL(x),OL(x)) for any x ∈ L.

Formalism Lattice Elements Order

Logic Programming Possible worlds ⊆
Default Logic and AEL Sets of possible worlds ⊇
Formal Argumentation Sets of arguments ⊆
Weighted ADFs Weighted worlds Pointwise comparison

SHACL Interpretations Truth order

41
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Default Logic and AEL Sets of possible worlds ⊇
Formal Argumentation Sets of arguments ⊆
Weighted ADFs Weighted worlds Pointwise comparison

SHACL Interpretations Truth order
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Operator-Based Semantics for Dialects of Logic Programming

∨ Aggregates in the body: p ← #sum{2 : p; q : 1; r : 1} ≥ 2.

∨ Propositional formulas in the body: p ← q ∧ (r ∨ (s ∧ ¬t)).

∨ Disjunctions in the head: p ∨ q ← q ∧ (r ∨ (s ∧ ¬t)).

∨ Choice constructs in the head: #count{p; q; r} = 2← ¬r .

∨ DL-based logic programs: KC (x)← ¬p(X ); C v D.

∨ Higher-order logic programs: S(P,Q)←; P(X )← ¬Q(X ).

? Fuzzy logic programs: p(X )← 0.5 · (q(x) + r(X )).

? Probabilistic logic programs: 0.3 :: p(X ).

? Hex-programs: tr(S ,P,O)← &RDF [uri ](S ,P,O).
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Operator-Based Semantics for other KR-formalisms

• autoepistemic logic [DMT03],

• default logic [DMT03],

• abstract argumentation [SW15],

• abstract dialectical frameworks [SW15],

• weighted abstract dialectical frameworks [Bog19],

• SCHACL [BJ21].
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Operator-Based Studies

Top-Down approach:

• Instead of studying a concept for a specific framework, define

and study it for operators over a lattice (and their

approximations).

• We can then apply this concept to all formalisms that are or

can be captured in AFT.

Examples:

∨ Stratification [VGD06]

∨ Conditional Independence [Hey23]

∨ Knowledge Compilation [BVdB15]

∨ Groundedness [BVdB15]

∨ Strong equivalence [Tru06]

∨ Argumentative dialogues

[HA20]

? Belief dynamics

? Modular equivalence

? Neuro-symbolism 44
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Course on Answer Set Programming

• UCT-students: 12-23rd February (Monday-Thursday).

• Non-UCT-students: recordings via NITheCS.

Course will have a more practical focus.

Topics:

• ASP syntax and semantics.

• Hierarchical and combinatorial modelling in ASP.

• Grounding and solving algorithms.

• Formal argumentation.

• Inductive logic programming (learning logic programs).

• . . .
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Summary

• Operators as the core for understanding answer set semantics.

• Paved the road towards approximation fixpoint theory.

• Algebraic theory that allows language independent work on

KR.

• Requires some buy-in, but in my view a great bargain.

• Interested in cooperating? Questions on AFT? Come talk to

me.
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