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Introduction and overview Traditional view

Traditional view of inductive reasoning

In an abstract way, inductive reasoning means to generate generic
knowledge from examples or observations.

Example

Fifi is a dog and barks
Lassie is a dog and barks
Bert is a dog and barks
Lady is a dog and barks
Bella is a dog and barks

(All) Dogs bark.

Homer is a bird and flies
Chirpy is a bird and flies
Ringo is a bird and flies
Pauly is a bird and flies
Tweety is a bird and does not fly

(Only a certain percentage of)
Birds fly.

Inductive reasoning has long been understood as being basically
probabilistic, and has been investigated mainly with Bayesian
methods; Carnap’s inductive logic is maybe the most famous
representative here.

4 / 39



Introduction and overview Traditional view

Traditional view of inductive reasoning

In an abstract way, inductive reasoning means to generate generic
knowledge from examples or observations.

Example

Fifi is a dog and barks
Lassie is a dog and barks
Bert is a dog and barks
Lady is a dog and barks
Bella is a dog and barks

(All) Dogs bark.

Homer is a bird and flies
Chirpy is a bird and flies
Ringo is a bird and flies
Pauly is a bird and flies
Tweety is a bird and does not fly

(Only a certain percentage of)
Birds fly.

Inductive reasoning has long been understood as being basically
probabilistic, and has been investigated mainly with Bayesian
methods; Carnap’s inductive logic is maybe the most famous
representative here.

4 / 39



Introduction and overview Traditional view

Traditional view of inductive reasoning

In an abstract way, inductive reasoning means to generate generic
knowledge from examples or observations.

Example

Fifi is a dog and barks
Lassie is a dog and barks
Bert is a dog and barks
Lady is a dog and barks
Bella is a dog and barks

(All) Dogs bark.

Homer is a bird and flies
Chirpy is a bird and flies
Ringo is a bird and flies
Pauly is a bird and flies
Tweety is a bird and does not fly

(Only a certain percentage of)
Birds fly.

Inductive reasoning has long been understood as being basically
probabilistic, and has been investigated mainly with Bayesian
methods; Carnap’s inductive logic is maybe the most famous
representative here.

4 / 39



Introduction and overview Novel vision

A novel vision of inductive reasoning

Inductive reasoning . . .

. . . should be able to “generate” new (generic) beliefs from given beliefs
and ideally, complete the beliefs of a human being as far as possible.
[GKI, Spohn - JAL 2024]

Partial Beliefs
Belief/Knowledge Base

(sets of)
“New” Inferred Beliefs,

Epistemic States,
(complex) Models

Induction

(principled)

Input to induction: knowledge base in a very general sense, e.g.,
propositional/first-order sentences, default rules/conditionals,
probabilistic sentences and conditionals, Bayesian networks
Output of induction: propositional/first-order sentences, default
rules/conditionals, probabilistic sentences and conditionals; inference
relations, probability distributions, epistemic states
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Introduction and overview Novel vision

A novel vision of inductive reasoning – Examples

Deduction
Input: sentences
Output:sentences

Reiter’s default logic
Input: default theory
Output:extensions

Answer set programming
Input: Program
Output:answer sets

System P
Input: set of conditionals
Output:set of conditionals,

inference relation

System Z, c-representations
Input: set of conditionals
Output:ranking function (OCF),

inference relations

Graphical probabilistic models
Input: graph,

(conditional) probabilities
Output:probabilities

Probabilistic Principle of
maximum entropy (MaxEnt)
Input: set of probabilistic

conditionals
Output:probability distribution

6 / 39



Introduction and overview Novel vision

A novel vision of inductive reasoning – Examples

Deduction
Input: sentences
Output:sentences

Reiter’s default logic
Input: default theory
Output:extensions

Answer set programming
Input: Program
Output:answer sets

System P
Input: set of conditionals
Output:set of conditionals,

inference relation

System Z, c-representations
Input: set of conditionals
Output:ranking function (OCF),

inference relations

Graphical probabilistic models
Input: graph,

(conditional) probabilities
Output:probabilities

Probabilistic Principle of
maximum entropy (MaxEnt)
Input: set of probabilistic

conditionals
Output:probability distribution

6 / 39



Introduction and overview Novel vision

A novel vision of inductive reasoning – Examples

Deduction
Input: sentences
Output:sentences

Reiter’s default logic
Input: default theory
Output:extensions

Answer set programming
Input: Program
Output:answer sets

System P
Input: set of conditionals
Output:set of conditionals,

inference relation

System Z, c-representations
Input: set of conditionals
Output:ranking function (OCF),

inference relations

Graphical probabilistic models
Input: graph,

(conditional) probabilities
Output:probabilities

Probabilistic Principle of
maximum entropy (MaxEnt)
Input: set of probabilistic

conditionals
Output:probability distribution

6 / 39



Introduction and overview Novel vision

A novel vision of inductive reasoning – Examples

Deduction
Input: sentences
Output:sentences

Reiter’s default logic
Input: default theory
Output:extensions

Answer set programming
Input: Program
Output:answer sets

System P
Input: set of conditionals
Output:set of conditionals,

inference relation

System Z, c-representations
Input: set of conditionals
Output:ranking function (OCF),

inference relations

Graphical probabilistic models
Input: graph,

(conditional) probabilities
Output:probabilities

Probabilistic Principle of
maximum entropy (MaxEnt)
Input: set of probabilistic

conditionals
Output:probability distribution

6 / 39



Introduction and overview Novel vision

A novel vision of inductive reasoning – Examples

Deduction
Input: sentences
Output:sentences

Reiter’s default logic
Input: default theory
Output:extensions

Answer set programming
Input: Program
Output:answer sets

System P
Input: set of conditionals
Output:set of conditionals,

inference relation

System Z, c-representations
Input: set of conditionals
Output:ranking function (OCF),

inference relations

Graphical probabilistic models
Input: graph,

(conditional) probabilities
Output:probabilities

Probabilistic Principle of
maximum entropy (MaxEnt)
Input: set of probabilistic

conditionals
Output:probability distribution

6 / 39



Introduction and overview Novel vision

A novel vision of inductive reasoning – Examples

Deduction
Input: sentences
Output:sentences

Reiter’s default logic
Input: default theory
Output:extensions

Answer set programming
Input: Program
Output:answer sets

System P
Input: set of conditionals
Output:set of conditionals,

inference relation

System Z, c-representations
Input: set of conditionals
Output:ranking function (OCF),

inference relations

Graphical probabilistic models
Input: graph,

(conditional) probabilities
Output:probabilities

Probabilistic Principle of
maximum entropy (MaxEnt)
Input: set of probabilistic

conditionals
Output:probability distribution

6 / 39



Introduction and overview Novel vision

A novel vision of inductive reasoning – Examples

Deduction
Input: sentences
Output:sentences

Reiter’s default logic
Input: default theory
Output:extensions

Answer set programming
Input: Program
Output:answer sets

System P
Input: set of conditionals
Output:set of conditionals,

inference relation

System Z, c-representations
Input: set of conditionals
Output:ranking function (OCF),

inference relations

Graphical probabilistic models
Input: graph,

(conditional) probabilities
Output:probabilities

Probabilistic Principle of
maximum entropy (MaxEnt)
Input: set of probabilistic

conditionals
Output:probability distribution

6 / 39



Introduction and overview Conditionals

Conditionals aka defeasible rules

Defeasible rules establish an uncertain, defeasible connection between
antecedent A and consequent B of a rule and can be (logically)
implemented by conditionals

(B|A) – “If A then (usually, probably, plausibly . . . ) B”

Conditionals encode semantical relationships (plausible inferences)
between the antecedent A and the consequent B.

Conditionals implement nonmonotonic inferences via “(B|A) is
accepted iff A |∼B holds”.

Conditionals occur in different shapes in many approaches (e.g., as
conditional probabilities in Bayesian approaches),

Conditionals seem to be similar to classical (material) implications “If
A then (definitely) B”, but are substantially different!

Indeed, many fallacies observed when applying classical logic to
uncertain domains are caused by mixing up implications and con-
ditionals!
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Introduction and overview Conditionals are not implications!

Conditionals and implications – example

Christmas on the northern hemisphere

If Christmas were in summer, there would be no snow at Christmas.

plausible, approved

If Christmas were in summer, there would be no Christmas gifts.

strange, why?

If Christmas were in summer, there would be no gravitation.

downright nonsense!

All these statements are logically true, when understood as (material)
implications (because Christmas is in winter on the northern hemisphere,
hence the antecedent is false!).

However, understood as conditionals, crucial differences appear!
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Introduction and overview Preferential entailment

What makes conditionals so special?

A conditional (B|A) focuses on cases where the premise A is fulfilled but
does not say anything about cases when A does not hold – conditionals go
beyond classical logic, as they are three-valued entities.

A conditional leaves more semantical room for modelling acceptance in
case its confirmation A ∧B is more plausible than its refutation A ∧ ¬B.

Conditional acceptance and preferential entailment |∼≺ [Makinson 89]

Let ≺ be a (well-behaved) relation on models (expressing , e.g., plausibility
via a total preorder ⪯).

(B|A) is accepted iff A |∼≺ B iff min≺Mod(A) ⊆ Mod(B),

iff in the most plausible models of A (wrt ≺), B holds also.

|∼≺ is a semantic-based nonmonotonic inference relation that is encoded
by conditionals on the syntax level.
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Introduction and overview Preferential entailment

Logics of conditionals and nonmonotonic reasoning

The basic trick is to leave the narrow frames of 2-valued logics and enter
into (at least) 3-valued conditional logics.

Conditional logics have a long tradition in logics and philosphy, going
back to the Old Greeks, with lots of formal systems and
axiomatizations.

There are also lots of formal properties and axiomatic systems for
nonmonotonic inference relations |∼ .

Well-behaved relations on possible worlds expressing (e.g.) plausibility
provide semantics to both conditionals and nonmonotonic inference
relations.

Note that plausibility relations are similar to, but significantly weaker
than probabilities.
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Introduction and overview Ranking functions

Ranking functions and conditionals

A particular useful implementation of a plausibility relation:

Ordinal conditional functions (OCF, ranking functions1) [Spohn 1988]

κ : Ω → N(∪{∞}) (Ω set of possible worlds, κ−1(0) ̸= ∅)

κ(ω1) < κ(ω2) ω1 is more plausible than ω2

κ(ω) = 0 ω is maximally plausible
κ(A) := min{κ(ω) | ω |= A}
Bel (κ) := {A | κ(¬A) > 0}

Validating conditionals

κ |= (B|A) iff κ(AB) < κ(AB) iff A |∼κB

κ accepts a conditional (B|A)
iff its verification AB is more plausible than its falsification AB
iff from A, defeasibly infer B (based on κ).

1Rankings can be understood as qualitative abstractions of probabilities
11 / 39
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Introduction and overview Ranking functions

Ranking functions – example

Example (ranked flyers)

κ(ω) = 0

κ(ω) = 1

κ(ω) = 2

κ(ω) = 4

p bf p b f p b f

pbf p bf

pbf pb f

pb f

Bel (κ) = Cn(p bf ∨ p b f ∨ p b f ) = Cn(p (f ∨ b )

κ(bf) = 0 < 1 = κ(bf ) =⇒ κ |= (f |b) and b |∼κf ,

but κ(pf ) = 1 < 2 = κ(pf) =⇒ κ |= (f |p) and p |∼κf
(also κ |= (b|p))

Ranking functions make conditional and nonmonotonic reasoning
particularly easy!
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Introduction and overview Motivating example

Motivating example

A psychologist summarizes his experiences after working in a helpcenter
for addicted people for several years:

People are rarely addicted both to alcohol (a) and to drugs (d),
(d|a), (a|d);

young people (y) are rarely addicted to alcohol, but more likely to be
addicted to drugs, (a|y), (d|y);
older people (y) are rarely addicted to drugs, but more likely to be
addicted to alcohol, (d|y), (a|y).

Now a young girl being addicted to alcohol visits the helpcenter, asking
the psychologist for help.

Will the psychologist expect her to be also addicted to drugs?
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Introduction and overview Motivating example

Motivating example (cont’d) and inductive perspective

Now, the psychologist will change his job, he will be working in a clinic in
which exclusively people being addicted to alcohol and/or drugs are
treated. He knows that in this clinic, the rate of people being addicted to
alcohol, but also addicted to drugs is higher than usual.

Can the psychologist use his (inductive) knowledge from experience? And
if yes, how can he do this?

→ For inductive reasoning, we need to be able to

reason from conditional belief bases

in dynamic environments, i.e., also involving belief revision.
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Introduction and overview Contributions and roadmap

Contributions of the talk

In this talk, I elaborate a general framework of inductive reasoning in
the context of belief revision, building upon conditionals.

A core concept in this methodology are epistemic states which are
equipped with meta-structures supporting reasoning and revision.

Beliefs are expressed by conditionals (B|A) in the first place, where
plain beliefs A are also covered by identifying the plausible belief A
with the conditional (A|⊤), where ⊤ is a tautology: A ≡ (A|⊤).

This joint framework of inductive reasoning and belief revision is
exemplified

in probabilistics, via the principles of optimum entropy;
for qualitative reasoning, via ranking functions and c-revisions.
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Basics on epistemic states and conditionals

Overview of this talk – Part I

Introduction and overview

Basics on epistemic states and conditionals

Induction and revision – a general framework
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Basics on epistemic states and conditionals Propositional logic

Basics of propositional logic

Syntax:
L = L(Σ) propositional language L over a set of atoms Σ

¬,∧,∨ junctors for negation, conjunction, disjunction
A ⇒ B ≡ ¬A ∨B material implication

Semantics:
Ω set of interpretations/models/possible worlds over Σ
ω |= A ω is a model of A(∈ L)
Mod (A) set of models of A

Entailment/Inference:
A |= B iff Mod (A) ⊆ Mod (B) classical deduction
Cn(A) = {B ∈ L | A |= B} classical consequence operator
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Basics on epistemic states and conditionals Epistemic states and conditionals

Going towards epistemic states and conditionals

We lift common logic concepts to conditionals and epistemic states Ψ:

Syntax: Conditionals (B|A)∗ ∈ (L | L)∗ are meant to expess
uncertain rules, and may be equipped with quantitative degrees of
belief, according to the chosen framework.

In probabilistics:
(L | L)∗ = (L | L)prob = {(B|A)[x] | A,B ∈ L, x ∈ [0, 1]}
In qualitative environments: (L | L)∗ = (L | L).

Semantics: Epistemic states Ψ are assumed to be specified by some
semantic meta-structure that is able to express conditional beliefs
(B|A)∗ from a suitable conditional language (L | L)∗.
Entailment/Inference: A satisfaction relation |= is given between
epistemic states and conditionals: Ψ |= (B|A)∗ means that (B|A)∗ is
accepted in Ψ, where acceptance is defined suitably.

For a probability distribution P , P |= (B|A)[x] iff P (A) > 0 and
P (B|A) = x.
For a ranking function κ, κ |= (B|A) iff κ(AB) < κ(AB).
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Basics on epistemic states and conditionals Meta-structures

Meta-structures associated with epistemic states

Examples of meta-structures ⪯Ψ to be associated with epistemic states for
(inductive) reasoning and revision:

Total preorders

Ranking functions (OCFs)

Possibility distributions

Modal logic frameworks

Probabilities
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Basics on epistemic states and conditionals Meta-structures

Rich Meta-Structures

Crucial advantages of (richer structures like) probabilities that are
equipped with two independent arithmetic operators (addition and
multiplication) for information processing:

Addition takes care of disjunctive propositional information, e.g., to
allow for reasoning by cases.

Multiplication allows for expressing (conditional) independencies;

its inverse operator, division, allows to easily transform one
distribution into another at the occurrence of new information via
conditioning.

Precise notion of difference (or ratio) can be defined, which is crucial
to interpreting conditionals.

Some of these features are also provided by ranking functions (OCFs,
[Spohn, 1988]) and possibility distributions.
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Basics on epistemic states and conditionals Conditional acceptance in epistemic states

Epistemic states and conditionals

Basic idea of conditional acceptance

A conditional (B|A) is accepted in an epistemic state if its verification AB
is deemed to be more plausible, probable etc than its falsification AB.

By considering A and B resp. A and B jointly when assessing plausibility,
probability, and the like, truth functionality is lost, but cognitive adequacy
is gained because for conditionals, humans would expect a meaningful
connection between antecedent and consequent (in contrast to material
implications).

Recall: Accepting a conditional (B|A) is basically the same as drawing the
nonmonotonic inference A |∼B via preferential entailment.
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Basics on epistemic states and conditionals Inductive reasoning

Conditional belief bases

Let E∗ = E∗
Σ denote the set of all such epistemic states based on (L | L)∗,

L = L(Σ).
Epistemic states are (epistemic) models of conditional belief bases, i.e.,
(finite) sets of conditionals ∆ ⊆ (L | L)∗:

Mod ∗(∆) = {Ψ ∈ E∗ | Ψ |= ∆}.

∆ ⊆ (L | L)∗ is consistent iff Mod ∗(∆) ̸= ∅, i.e. iff there is an epistemic
state which is a model of ∆.

Example

The belief base ∆psych = {(d|a), (a|d), (a|y), (d|y), (d|y), (a|y)} can be
interpreted by epistemic states that are equipped with a total preorder, or
with a ranking function [Spohn, 1988]; it is consistent.
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Basics on epistemic states and conditionals Inductive reasoning

Inductive reasoning from conditional belief bases

Choosing a “best” model Ψ∗ of ∆ allows for inductive reasoning from ∆
via

A |∼∆
Ψ∗B iff Ψ∗ |= (B|A).

Examples of such model-based inductive reasoning:

system Z

c-representations

probabilistic principle of maximum entropy

(possibilistic approaches)

We need to talk about belief revision . . .
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Basics on epistemic states and conditionals AGM core ideas

The core ideas of AGM theory

The main approach to belief revision in KR is the AGM theory
[Alchourron, Gärdenfors, Makinson 1985], dealing with revising a belief set
K by new propositional information A:

K ∗A.

The AGM postulates are recommendations for rational belief change, e.g.,

The beliefs of the agent should be deductively closed, i.e., the agent
should apply logical reasoning whenever possible.

The change operation should be successful, i.e., A ∈ K ∗A.

In case of consistency, belief change should be performed via
expansion.

The result of belief change should depend only upon the semantical
content of the new information.
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expansion.
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content of the new information.

24 / 39



Basics on epistemic states and conditionals AGM core ideas

The core ideas of AGM theory

The main approach to belief revision in KR is the AGM theory
[Alchourron, Gärdenfors, Makinson 1985], dealing with revising a belief set
K by new propositional information A:

K ∗A.

The AGM postulates are recommendations for rational belief change, e.g.,

The beliefs of the agent should be deductively closed, i.e., the agent
should apply logical reasoning whenever possible.

The change operation should be successful, i.e., A ∈ K ∗A.

In case of consistency, belief change should be performed via
expansion.

The result of belief change should depend only upon the semantical
content of the new information.

24 / 39



Basics on epistemic states and conditionals AGM core ideas

The core ideas of AGM theory

The main approach to belief revision in KR is the AGM theory
[Alchourron, Gärdenfors, Makinson 1985], dealing with revising a belief set
K by new propositional information A:

K ∗A.

The AGM postulates are recommendations for rational belief change, e.g.,

The beliefs of the agent should be deductively closed, i.e., the agent
should apply logical reasoning whenever possible.

The change operation should be successful, i.e., A ∈ K ∗A.

In case of consistency, belief change should be performed via
expansion.

The result of belief change should depend only upon the semantical
content of the new information.

24 / 39



Basics on epistemic states and conditionals AGM core ideas

The core ideas of AGM theory

The main approach to belief revision in KR is the AGM theory
[Alchourron, Gärdenfors, Makinson 1985], dealing with revising a belief set
K by new propositional information A:

K ∗A.

The AGM postulates are recommendations for rational belief change, e.g.,

The beliefs of the agent should be deductively closed, i.e., the agent
should apply logical reasoning whenever possible.

The change operation should be successful, i.e., A ∈ K ∗A.

In case of consistency, belief change should be performed via
expansion.

The result of belief change should depend only upon the semantical
content of the new information.

24 / 39



Basics on epistemic states and conditionals Belief change in probabilistics

200 years before . . .

Considering the task of belief change is not new: About 200 years before
AGM theory, Bayes came up with his famous rule in probabilistics:

P (B|A) =
P (A ∧B)

P (A)
.

Actually, Bayesian conditioning fulfills the core ideas of AGM theory, but
obviously, the contexts of the theories (changing a code of law for AGM
vs. random experiments and chances – e.g., in gambling – for Bayes)
seemed to be too diverse to realize a strong connection.
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Basics on epistemic states and conditionals Common grounds

The general task of belief change

However, from a formal resp. epistemic point of view, the tasks are similar
if not identical:

General task of belief change

Given some (prior) epistemic state Ψ and some new information I, change
beliefs rationally by applying a change operator ∗ to obtain a (posterior)
epistemic state Ψ′:

Ψ ∗ I = Ψ′

AGM : Ψ = K set of propositional beliefs
Bayes : Ψ = P probability distribution
both : I = A propositional belief
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Basics on epistemic states and conditionals AGM is not enough

Problems with AGM

Narrow logical framework: Classical propositional logic, no room for
uncertainty
→ Richer epistemic frameworks?

One-step revision: AGM belief revision does not consider changes of
epistemic states nor revision strategies
→ Iterated revision

New information: Only one proposition – what about sets of
propositions, conditional statements, sets of conditionals?
→ Conditional and multiple belief revision
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Basics on epistemic states and conditionals Iterated revision

Iterated belief revision

Iterating belief revision means handling tasks of the form

((Ψ ∗A) ∗B) ∗ C

(Ψ epistemic state, A,B,C formulas).

Via the Ramsey test

Ψ |= (B|A) iff Ψ ∗A |= B,

iterated revision is also about the revision of revision strategies, encoded
by conditionals.

In iterative belief revision, the AGM principle of minimal change is
replaced or complemented by a principle of conditional preservation
[Darwiche & Pearl, AIJ 1997].
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Basics on epistemic states and conditionals Iterated revision

Iterated belief revision and AGM

Crucial result [Katsuno & Katsuno, 1991] for iterating AGM revision, resp.
lifting AGM to the level of epistemic states:

All AGM postulates for revision can be fulfilled iff there is a total preorder
⪯K on possible worlds s.t. Bel (⪯K) = K and

Mod(K ∗A) = min⪯K Mod(A).

Epistemic states for AGM revision need to be equipped
with total preorders (at least) (→ meta-structures).

Close connection to preferential entailment:
min≺Mod(A) ⊆ Mod(B).
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Basics on epistemic states and conditionals Fundamental connections

Fundamental equivalences among induction, revision, and
conditionals

Fundamental connection between

epistemic states Ψ ∈ E∗,
⪯Ψ suitable relation expressing plausibility, probability etc,
conditionals,
inductive inference relation |∼Ψ based on Ψ, and
epistemic (or iterative) revision operator ∗ in the sense of [D&P 1997]:

Ψ |= (B|A) iff AB ≺Ψ AB iff A |∼ΨB iff Ψ ∗A |= B.

Both epistemic states and conditionals are carriers of strategic
information that become effective for reasoning and revision.

More generally, we assume that ∗ can also be used for epistemic,
conditional revision Ψ ∗∆ ∈ E∗ such that Ψ ∗∆ |= ∆ holds 2.

2This also includes the case of revising by a (plausible) proposition A ≡ (A|⊤)
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Induction and revision – a general framework

Overview of this talk – Part I

Introduction and overview

Basics on epistemic states and conditionals

Induction and revision – a general framework
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Induction and revision – a general framework

Inductive reasoning from epistemic states

Inductive reasoning = completing partial beliefs ∆
to obtain an epistemic state Ψ∆:

Ψ∆ = ind(∆).

Examples:

∆ = set of conditionals; ind can be system Z, or a c-representation

∆ = set of probabilistic conditionals; ind can be the MaxEnt principle

Inductive reasoning from ∆ is then implemented by reasoning from
Ψ∆ = ind(∆) via the fundamental equivalences above and the conditionals
being accepted in Ψ.
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Induction and revision – a general framework

Inductive reasoning from epistemic states – example

∆psych = {(d|a), (a|d), (a|y), (d|y), (d|y), (a|y)}

qualitative framework: Choose system Z or c-representations to select
a “best” model κpsych;

of course, e.g., y |∼κpsych
d.

probabilistic framework: Associate each conditional with a suitable
probability (> 0.5), use, e.g., MaxEnt to select a “best” model Ppsych.

But that’s not the end of the story . . .
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Induction and revision – a general framework

Receiving new information I
What happens if new information I arrives, and we want to take this into
account for our inductive reasoning?

I can be
a fact;
complex contextual information also including conditionals (e.g.,
when we enter a new country, different compliance rules apply);
affecting our background beliefs, triggering a learning process.

→ Belief revision, returning a new epistemic state Ψ′ after revising Ψ by I:
Ψ∆ ∗ I = ind(∆) ∗ I = Ψ′ ∈ E∗.

Challenges:

How do ind and ∗ interact?
What roles do Ψ∆, ∆ and I play in this scenario?

Note that the revision operator ∗ is used in quite a generic sense (technical
details to be elaborated in the following).
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Induction and revision – a general framework

Different revision scenarios

The agent’s new epistemic state Ψ′ should arise from the adaptation of
background beliefs Ψ∆ to new contextual information I, and this process
should be iterative, i.e., also being able to take further information I ′ into
account:

(Ψ∆ ∗ I) ∗ I ′ = (ind(∆) ∗ I) ∗ I ′

First case: I ′ refers to the same context as I, narrowing the context
(conservative revision, epistemic expansion). In this case, I and I ′

should be considered on the same level, and we propose Ψ∆ ∗ (I ∪I ′).

Second case: I ′ is information on a new, shifted context for which,
however, I is still relevant (update). Then we propose (Ψ∆ ∗ I) ∗ I ′

with two revision operators of the same kind.

Third case: I ′ affects background beliefs (learning). If I ′ is fully
compatible with ∆, we propose ind(∆ ∪ I ′) ∗ I, otherwise, we
propose (ind(∆) ∗ I ′) ∗ I.
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Induction and revision – a general framework

Revision scenarios – example

∆psych = {(d|a), (a|d), (a|y), (d|y), (d|y), (a|y)}
Now a young girl being addicted to alcohol visits the helpcenter, . . .

Later
on, the psychologist changes his job . . .

Ψpsych = ind(∆psych)

Conservative revision: I = young; I ′ = alcohol.

Ψpsych ∗ (I ∪ I ′) = Ψpsych ∗ (y ∧ a).

Update: New job/context – only people being addicted to alcohol
and/or drugs, and being addicted to drugs in the context of alcohol
abuse is (more) plausible

Ψpsych ∗ {(a ∨ d|⊤), (d|a)}.
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Induction and revision – a general framework

Revision scenarios – example (cont’d)

Learning: While treating the young girl being addicted to alcohol (in
his old job), the psychologist reads in a medical journal that for young
people being addicted to alcohol, it is (more) plausible to also being
addicted to drugs

ind(∆psych ∪ {(d|ya)}) ∗ (y ∧ a).
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Induction and revision – a general framework

Induction and belief revision

Belief revision is needed for a coherent perspective of inductive reasoning.

But also inductive reasoning can affect belief revision: Changing ind(∆) to
ind(∆ ∪ I ′) changes background beliefs for revision.

→ Novel view:
inductive reasoning involving background beliefs Ψbk (= ind(∆bk)) via
revision:

Ψ = indΨbk
(∆) = Ψbk ∗∆.

When no background beliefs are available or relevant — take the uniform
epistemic state Ψu as a starting point:

ind = indΨu and Ψ∆ = ind(∆) = Ψu ∗∆.

→ thorough implementation of induction via belief revision.
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Induction and revision – a general framework

Induction based on revision

Each epistemic revision operator that is able to handle complex
information ∆ induces an inductive inference operator.

Revision methodologies may yield immediately mechanisms of
inductive reasoning.

Inductive reasoning is explicitly split up into

its inductive mechanism (induced by a revision mechanism),
its involved background beliefs,
and context-based beliefs,

which helps analyzing it.

Quality criteria from belief revision (postulates, lots of them are
available) can be useful to classify approaches to induction.

We need examples here → Part II.
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