
Research Project
Explainable Answer-Set Programming

Cape-KR 2024

Tobias Geibinger

Introduction

User Interface

Dialogue Explanation

Knowledge Base

Knowledge
Acquisition

Knowledge
Processing

Case-
specific

Knowledge

Ex
pe

rt
 In

te
rf

ac
e

Historical Architecture of Symbolic AI Systems

Introduction

User Interface

Dialogue Explanation

Knowledge Base

Knowledge
Acquisition

Knowledge
Processing

Case-
specific

Knowledge

Ex
pe

rt
 In

te
rf

ac
e

Historical Architecture of Symbolic AI Systems

Explanation

Motivation

Motivation
• We study Answer-set Programming (ASP)

Motivation
• We study Answer-set Programming (ASP)

• ASP is a popular declarative problem-solving paradigm

Motivation
• We study Answer-set Programming (ASP)

• ASP is a popular declarative problem-solving paradigm

• Efficient solvers exist

Motivation
• We study Answer-set Programming (ASP)

• ASP is a popular declarative problem-solving paradigm

• Efficient solvers exist

• It’s rule-based nature makes it attractive for critical domains

Motivation
• We study Answer-set Programming (ASP)

• ASP is a popular declarative problem-solving paradigm

• Efficient solvers exist

• It’s rule-based nature makes it attractive for critical domains

• It has been utilised for:

Motivation
• We study Answer-set Programming (ASP)

• ASP is a popular declarative problem-solving paradigm

• Efficient solvers exist

• It’s rule-based nature makes it attractive for critical domains

• It has been utilised for:

Medicine

Motivation
• We study Answer-set Programming (ASP)

• ASP is a popular declarative problem-solving paradigm

• Efficient solvers exist

• It’s rule-based nature makes it attractive for critical domains

• It has been utilised for:

Medicine Scheduling

Motivation
• We study Answer-set Programming (ASP)

• ASP is a popular declarative problem-solving paradigm

• Efficient solvers exist

• It’s rule-based nature makes it attractive for critical domains

• It has been utilised for:

Medicine Scheduling Planning

Motivation
• We study Answer-set Programming (ASP)

• ASP is a popular declarative problem-solving paradigm

• Efficient solvers exist

• It’s rule-based nature makes it attractive for critical domains

• It has been utilised for:

Medicine Scheduling Planning Logistics

Motivation
• We study Answer-set Programming (ASP)

• ASP is a popular declarative problem-solving paradigm

• Efficient solvers exist

• It’s rule-based nature makes it attractive for critical domains

• It has been utilised for:

Medicine Scheduling Planning Logistics Pathfinding

Motivation
• We study Answer-set Programming (ASP)

• ASP is a popular declarative problem-solving paradigm

• Efficient solvers exist

• It’s rule-based nature makes it attractive for critical domains

• It has been utilised for:

Provided solutions still need to be explained

Medicine Scheduling Planning Logistics Pathfinding

Basics

Answer-set Programming (ASP)

ASP programs are finite sets of rules:

Basics

Answer-set Programming (ASP)

ASP programs are finite sets of rules:

 a1 ∨ … ∨ ak ← bk+1, …, bm, not bm+1, …, not bn

Basics

Answer-set Programming (ASP)

ASP programs are finite sets of rules:

 a1 ∨ … ∨ ak ← bk+1, …, bm, not bm+1, …, not bn

, and are atomsa1, …, ak bk+1, …, bm bm+1, …, bn

Basics

Answer-set Programming (ASP)

ASP programs are finite sets of rules:

 a1 ∨ … ∨ ak ← bk+1, …, bm, not bm+1, …, not bn

, and are atomsa1, …, ak bk+1, …, bm bm+1, …, bn

Basics

Answer-set Programming (ASP)
default negation

ASP programs are finite sets of rules:

 a1 ∨ … ∨ ak ← bk+1, …, bm, not bm+1, …, not bn

, and are atomsa1, …, ak bk+1, …, bm bm+1, …, bn

Atoms can be ground or have variables: 	

Basics

Answer-set Programming (ASP)
default negation

ASP programs are finite sets of rules:

 a1 ∨ … ∨ ak ← bk+1, …, bm, not bm+1, …, not bn

, and are atomsa1, …, ak bk+1, …, bm bm+1, …, bn

Atoms can be ground or have variables: 	

Basics

Answer-set Programming (ASP)
default negation

p

ASP programs are finite sets of rules:

 a1 ∨ … ∨ ak ← bk+1, …, bm, not bm+1, …, not bn

, and are atomsa1, …, ak bk+1, …, bm bm+1, …, bn

Atoms can be ground or have variables: 	

Basics

Answer-set Programming (ASP)
default negation

p color()C

ASP programs are finite sets of rules:

 a1 ∨ … ∨ ak ← bk+1, …, bm, not bm+1, …, not bn

, and are atomsa1, …, ak bk+1, …, bm bm+1, …, bn

Atoms can be ground or have variables: 	

Basics

Answer-set Programming (ASP)
default negation

instantiated during grounding

p color()C

ASP programs are finite sets of rules:

 a1 ∨ … ∨ ak ← bk+1, …, bm, not bm+1, …, not bn

, and are atomsa1, …, ak bk+1, …, bm bm+1, …, bn

Atoms can be ground or have variables: 	

An interpretation is a set of ground atoms, which satisfies a rule if: 𝐼

Basics

Answer-set Programming (ASP)
default negation

instantiated during grounding

p color()C

ASP programs are finite sets of rules:

 a1 ∨ … ∨ ak ← bk+1, …, bm, not bm+1, …, not bn

, and are atomsa1, …, ak bk+1, …, bm bm+1, …, bn

Atoms can be ground or have variables: 	

An interpretation is a set of ground atoms, which satisfies a rule if: 𝐼

whenever and , then for some bk+1, …, bm ∈ I bm+1, …, bn ∉ I ai ∈ I (1 ≤ i ≤ k)

Basics

Answer-set Programming (ASP)
default negation

instantiated during grounding

p color()C

Basics

Answer-set Programming (ASP)

 is an answer set of program if it is a minimal model of the Gelfond-Lifschitz reduct I P

Basics

Answer-set Programming (ASP)

 is an answer set of program if it is a minimal model of the Gelfond-Lifschitz reduct I P

Basics

Answer-set Programming (ASP)

∣ a1 ∨ … ∨ ak ← bk+1, …, bm, not bm+1, …, not bn ∈ P, a1 ∨ … ∨ ak ← bk+1, …, bmPI := {
bm+1, …, bn ∉ I }

 is an answer set of program if it is a minimal model of the Gelfond-Lifschitz reduct I P

Intuition: Assuming everything not in is false, the rest is stable w.r.t. I P

Basics

Answer-set Programming (ASP)

∣ a1 ∨ … ∨ ak ← bk+1, …, bm, not bm+1, …, not bn ∈ P, a1 ∨ … ∨ ak ← bk+1, …, bmPI := {
bm+1, …, bn ∉ I }

 is an answer set of program if it is a minimal model of the Gelfond-Lifschitz reduct I P

Intuition: Assuming everything not in is false, the rest is stable w.r.t. I P
Example:

Basics

Answer-set Programming (ASP)

∣ a1 ∨ … ∨ ak ← bk+1, …, bm, not bm+1, …, not bn ∈ P, a1 ∨ … ∨ ak ← bk+1, …, bmPI := {
bm+1, …, bn ∉ I }

warhawk(𝖷) ← republican(𝖷), not pacifist(𝖷)
pacifist(𝖷) ← quaker(𝖷), not warhawk(𝖷)

republic(𝗇𝗂𝗑𝗈𝗇) ←
quaker(𝗇𝗂𝗑𝗈𝗇) ←

 is an answer set of program if it is a minimal model of the Gelfond-Lifschitz reduct I P

Intuition: Assuming everything not in is false, the rest is stable w.r.t. I P
Example:

Basics

Answer-set Programming (ASP)

Answer sets:

∣ a1 ∨ … ∨ ak ← bk+1, …, bm, not bm+1, …, not bn ∈ P, a1 ∨ … ∨ ak ← bk+1, …, bmPI := {
bm+1, …, bn ∉ I }

warhawk(𝖷) ← republican(𝖷), not pacifist(𝖷)
pacifist(𝖷) ← quaker(𝖷), not warhawk(𝖷)

republic(𝗇𝗂𝗑𝗈𝗇) ←
quaker(𝗇𝗂𝗑𝗈𝗇) ←

}
I1 = { republican(𝗇𝗂𝗑𝗈𝗇), quaker(𝗇𝗂𝗑𝗈𝗇),

warhawk(𝗇𝗂𝗑𝗈𝗇)

 is an answer set of program if it is a minimal model of the Gelfond-Lifschitz reduct I P

Intuition: Assuming everything not in is false, the rest is stable w.r.t. I P
Example:

Basics

Answer-set Programming (ASP)

Answer sets:

∣ a1 ∨ … ∨ ak ← bk+1, …, bm, not bm+1, …, not bn ∈ P, a1 ∨ … ∨ ak ← bk+1, …, bmPI := {
bm+1, …, bn ∉ I }

warhawk(𝖷) ← republican(𝖷), not pacifist(𝖷)
pacifist(𝖷) ← quaker(𝖷), not warhawk(𝖷)

republic(𝗇𝗂𝗑𝗈𝗇) ←
quaker(𝗇𝗂𝗑𝗈𝗇) ← }

I2 = { republican(𝗇𝗂𝗑𝗈𝗇), quaker(𝗇𝗂𝗑𝗈𝗇),
pacifist(𝗇𝗂𝗑𝗈𝗇)

}
I1 = { republican(𝗇𝗂𝗑𝗈𝗇), quaker(𝗇𝗂𝗑𝗈𝗇),

warhawk(𝗇𝗂𝗑𝗈𝗇)

Methodology

Answer-set Programming (ASP)

Methodology

Answer-set Programming (ASP)

Combinatorial Problem

Methodology

Answer-set Programming (ASP)

Combinatorial Problem

Facts
node(𝟣), node(𝟤), node(𝟥),
node(𝟦), node(𝟧), edge(𝟣, 𝟤),
edge(𝟤, 𝟥), edge(𝟤, 𝟧), edge(𝟥, 𝟧),
edge(𝟦, 𝟧), edge(𝟣, 𝟦)

Methodology

Answer-set Programming (ASP)

r (𝖷) ∨ g(𝖷) ∨ b(𝖷) ← node(𝖷)
← edge(𝖷, 𝖸), r (𝖷), r (𝖸)

ASP Encoding

← edge(𝖷, 𝖸), g(𝖷), g(𝖸)
← edge(𝖷, 𝖸), b(𝖷), b(𝖸)

Combinatorial Problem

Facts
node(𝟣), node(𝟤), node(𝟥),
node(𝟦), node(𝟧), edge(𝟣, 𝟤),
edge(𝟤, 𝟥), edge(𝟤, 𝟧), edge(𝟥, 𝟧),
edge(𝟦, 𝟧), edge(𝟣, 𝟦)

Methodology

Answer-set Programming (ASP)

r (𝖷) ∨ g(𝖷) ∨ b(𝖷) ← node(𝖷)
← edge(𝖷, 𝖸), r (𝖷), r (𝖸)

ASP Encoding

← edge(𝖷, 𝖸), g(𝖷), g(𝖸)
← edge(𝖷, 𝖸), b(𝖷), b(𝖸)

ASP Solver

Combinatorial Problem

Facts
node(𝟣), node(𝟤), node(𝟥),
node(𝟦), node(𝟧), edge(𝟣, 𝟤),
edge(𝟤, 𝟥), edge(𝟤, 𝟧), edge(𝟥, 𝟧),
edge(𝟦, 𝟧), edge(𝟣, 𝟦)

Methodology

Answer-set Programming (ASP)

r (𝖷) ∨ g(𝖷) ∨ b(𝖷) ← node(𝖷)
← edge(𝖷, 𝖸), r (𝖷), r (𝖸)

ASP Encoding

← edge(𝖷, 𝖸), g(𝖷), g(𝖸)
← edge(𝖷, 𝖸), b(𝖷), b(𝖸)

ASP Solver

Combinatorial Problem Solution
Answer set

g(𝟣), b(𝟤), r(𝟥), r(𝟦), g(𝟧)

Facts
node(𝟣), node(𝟤), node(𝟥),
node(𝟦), node(𝟧), edge(𝟣, 𝟤),
edge(𝟤, 𝟥), edge(𝟤, 𝟧), edge(𝟥, 𝟧),
edge(𝟦, 𝟧), edge(𝟣, 𝟦)

Methodology

Answer-set Programming (ASP)

r (𝖷) ∨ g(𝖷) ∨ b(𝖷) ← node(𝖷)
← edge(𝖷, 𝖸), r (𝖷), r (𝖸)

ASP Encoding

← edge(𝖷, 𝖸), g(𝖷), g(𝖸)
← edge(𝖷, 𝖸), b(𝖷), b(𝖸)

ASP Solver

Combinatorial Problem Solution

Solution

Solution

…

Answer set
g(𝟣), b(𝟤), r(𝟥), r(𝟦), g(𝟧)

Answer set
r(𝟣), g(𝟤), r(𝟥), b(𝟦), g(𝟧)

Answer set
g(𝟣), r(𝟤), b(𝟥), r(𝟦), r(𝟧)

Facts
node(𝟣), node(𝟤), node(𝟥),
node(𝟦), node(𝟧), edge(𝟣, 𝟤),
edge(𝟤, 𝟥), edge(𝟤, 𝟧), edge(𝟥, 𝟧),
edge(𝟦, 𝟧), edge(𝟣, 𝟦)

Extensions

Answer-set Programming

ASP

Extensions

Answer-set Programming

ASP

Choice & Aggregates

{colored(N,C) : color(C)} :- node(N)

#count{ E : empl(E), cert(E,C) }

• Choice rules & Aggregates

Extensions

Answer-set Programming

ASP

Choice & Aggregates

{colored(N,C) : color(C)} :- node(N)

#count{ E : empl(E), cert(E,C) }

• Choice rules & Aggregates
- Syntactic sugar
- but very useful

Extensions

Answer-set Programming

ASP
External Computations

Choice & Aggregates

{colored(N,C) : color(C)} :- node(N)

#count{ E : empl(E), cert(E,C) }

• Choice rules & Aggregates
- Syntactic sugar
- but very useful

• HEX programs / clingo

Extensions

Answer-set Programming

ASP
External Computations

Custom Theories

Choice & Aggregates

{colored(N,C) : color(C)} :- node(N)

#count{ E : empl(E), cert(E,C) }

• Choice rules & Aggregates
- Syntactic sugar
- but very useful

• HEX programs / clingo

• ASP modulo Theories

Extensions

Answer-set Programming

ASP
External Computations

Custom Theories

Choice & Aggregates

{colored(N,C) : color(C)} :- node(N)

#count{ E : empl(E), cert(E,C) }

• Choice rules & Aggregates
- Syntactic sugar
- but very useful

• HEX programs / clingo

• ASP modulo Theories
- Linear Constraints (CASP)
- Difference Logic
- …

Extensions

Answer-set Programming

ASP
External Computations

Custom Theories

Choice & Aggregates

{colored(N,C) : color(C)} :- node(N)

#count{ E : empl(E), cert(E,C) }

Equilibrium Logic

• Choice rules & Aggregates
- Syntactic sugar
- but very useful

• HEX programs / clingo

• ASP modulo Theories
- Linear Constraints (CASP)
- Difference Logic
- …

• Equilibrium Logic

Extensions

Answer-set Programming

ASP

Neural Networks

External Computations

Custom Theories

Choice & Aggregates

{colored(N,C) : color(C)} :- node(N)

#count{ E : empl(E), cert(E,C) }

Equilibrium Logic

• Choice rules & Aggregates
- Syntactic sugar
- but very useful

• HEX programs / clingo

• ASP modulo Theories
- Linear Constraints (CASP)
- Difference Logic
- …

• Equilibrium Logic

• NeurASP

Extensions

Answer-set Programming

ASP

Neural Networks

External Computations

Custom Theories

Probabilistic Reasoning

impossible unlikely likelyeven chance Choice & Aggregates

{colored(N,C) : color(C)} :- node(N)

#count{ E : empl(E), cert(E,C) }

Equilibrium Logic

• Choice rules & Aggregates
- Syntactic sugar
- but very useful

• HEX programs / clingo

• ASP modulo Theories
- Linear Constraints (CASP)
- Difference Logic
- …

• Equilibrium Logic

• NeurASP

• LPMLN

Explanations

Answer-set Programming

For consistent programs

Explanations

Answer-set Programming

For consistent programs
• Offline justification graphs / xASP

Explanations

Answer-set Programming

For consistent programs
• Offline justification graphs / xASP

• Causal explanations

Explanations

Answer-set Programming

For consistent programs
• Offline justification graphs / xASP

• Causal explanations

• Witnesses

Explanations

Answer-set Programming

For consistent programs
• Offline justification graphs / xASP

• Causal explanations

• Witnesses

• xclingo

Explanations

Answer-set Programming

For consistent programs
• Offline justification graphs / xASP

• Causal explanations

• Witnesses

• xclingo

• …

Explanations

Answer-set Programming

For consistent programs
• Offline justification graphs / xASP

• Causal explanations

• Witnesses

• xclingo

• …

Supported language features vary

Explanations

Answer-set Programming

For consistent programs
• Offline justification graphs / xASP

• Causal explanations

• Witnesses

• xclingo

• …

Supported language features vary

Some common principles

Explanations

Answer-set Programming

For consistent programs
• Offline justification graphs / xASP

• Causal explanations

• Witnesses

• xclingo

• …

Supported language features vary

Some common principles

Explanations

Answer-set Programming
Example:

warhawk(𝖷) ← republican(𝖷), not pacif ist(𝖷)
pacif ist(𝖷) ← quaker(𝖷), not warhawk(𝖷)

republic(𝗇𝗂𝗑𝗈𝗇) ←
quaker(𝗇𝗂𝗑𝗈𝗇) ←

warhawk(𝖷) ← republican(𝖷), not pacif ist(𝖷)

}
I1 = { republican(𝗇𝗂𝗑𝗈𝗇), quaker(𝗇𝗂𝗑𝗈𝗇),

warhawk(𝗇𝗂𝗑𝗈𝗇)

For consistent programs
• Offline justification graphs / xASP

• Causal explanations

• Witnesses

• xclingo

• …

Supported language features vary

Some common principles

Explanations

Answer-set Programming
Example:

warhawk(𝖷) ← republican(𝖷), not pacif ist(𝖷)
pacif ist(𝖷) ← quaker(𝖷), not warhawk(𝖷)

republic(𝗇𝗂𝗑𝗈𝗇) ←
quaker(𝗇𝗂𝗑𝗈𝗇) ←

warhawk(𝖷) ← republican(𝖷), not pacif ist(𝖷)

}
I1 = { republican(𝗇𝗂𝗑𝗈𝗇), quaker(𝗇𝗂𝗑𝗈𝗇),

warhawk(𝗇𝗂𝗑𝗈𝗇)

warhawk(𝗇𝗂𝗑𝗈𝗇)

For consistent programs
• Offline justification graphs / xASP

• Causal explanations

• Witnesses

• xclingo

• …

Supported language features vary

Some common principles

Explanations

Answer-set Programming
Example:

warhawk(𝖷) ← republican(𝖷), not pacif ist(𝖷)
pacif ist(𝖷) ← quaker(𝖷), not warhawk(𝖷)

republic(𝗇𝗂𝗑𝗈𝗇) ←
quaker(𝗇𝗂𝗑𝗈𝗇) ←

warhawk(𝖷) ← republican(𝖷), not pacif ist(𝖷)

}
I1 = { republican(𝗇𝗂𝗑𝗈𝗇), quaker(𝗇𝗂𝗑𝗈𝗇),

warhawk(𝗇𝗂𝗑𝗈𝗇)

warhawk(𝗇𝗂𝗑𝗈𝗇)

republican(𝗇𝗂𝗑𝗈𝗇)

For consistent programs
• Offline justification graphs / xASP

• Causal explanations

• Witnesses

• xclingo

• …

Supported language features vary

Some common principles

Explanations

Answer-set Programming
Example:

⊤

warhawk(𝖷) ← republican(𝖷), not pacif ist(𝖷)
pacif ist(𝖷) ← quaker(𝖷), not warhawk(𝖷)

republic(𝗇𝗂𝗑𝗈𝗇) ←
quaker(𝗇𝗂𝗑𝗈𝗇) ←

warhawk(𝖷) ← republican(𝖷), not pacif ist(𝖷)

}
I1 = { republican(𝗇𝗂𝗑𝗈𝗇), quaker(𝗇𝗂𝗑𝗈𝗇),

warhawk(𝗇𝗂𝗑𝗈𝗇)

warhawk(𝗇𝗂𝗑𝗈𝗇)

republican(𝗇𝗂𝗑𝗈𝗇)

For consistent programs
• Offline justification graphs / xASP

• Causal explanations

• Witnesses

• xclingo

• …

Supported language features vary

Some common principles

Differences in how negation is handled

Explanations

Answer-set Programming

¬pacifist(𝗇𝗂𝗑𝗈𝗇)

…

Example:

⊤

warhawk(𝖷) ← republican(𝖷), not pacif ist(𝖷)
pacif ist(𝖷) ← quaker(𝖷), not warhawk(𝖷)

republic(𝗇𝗂𝗑𝗈𝗇) ←
quaker(𝗇𝗂𝗑𝗈𝗇) ←

warhawk(𝖷) ← republican(𝖷), not pacif ist(𝖷)

}
I1 = { republican(𝗇𝗂𝗑𝗈𝗇), quaker(𝗇𝗂𝗑𝗈𝗇),

warhawk(𝗇𝗂𝗑𝗈𝗇)

warhawk(𝗇𝗂𝗑𝗈𝗇)

republican(𝗇𝗂𝗑𝗈𝗇)

For consistent programs
• Offline justification graphs / xASP

• Causal explanations

• Witnesses

• xclingo

• …

Supported language features vary

Some common principles

Differences in how negation is handled

Explanations are not always satisfactory

Explanations

Answer-set Programming

¬pacifist(𝗇𝗂𝗑𝗈𝗇)

…

Example:

⊤

warhawk(𝖷) ← republican(𝖷), not pacif ist(𝖷)
pacif ist(𝖷) ← quaker(𝖷), not warhawk(𝖷)

republic(𝗇𝗂𝗑𝗈𝗇) ←
quaker(𝗇𝗂𝗑𝗈𝗇) ←

warhawk(𝖷) ← republican(𝖷), not pacif ist(𝖷)

}
I1 = { republican(𝗇𝗂𝗑𝗈𝗇), quaker(𝗇𝗂𝗑𝗈𝗇),

warhawk(𝗇𝗂𝗑𝗈𝗇)

warhawk(𝗇𝗂𝗑𝗈𝗇)

republican(𝗇𝗂𝗑𝗈𝗇)

Explanations

Answer-set Programming

Explanations for inconsistent programs are mostly considered for debugging

Explanations

Answer-set Programming

Explanations for inconsistent programs are mostly considered for debugging

Approaches are based on:

Explanations

Answer-set Programming

Explanations for inconsistent programs are mostly considered for debugging

Approaches are based on:

• Giving reasons as to why each interpretation is not an answer-set

Explanations

Answer-set Programming

Explanations for inconsistent programs are mostly considered for debugging

Approaches are based on:

• Giving reasons as to why each interpretation is not an answer-set

• Minimally inconsistent sets of rules

Explanations

Answer-set Programming

Explanations for inconsistent programs are mostly considered for debugging

Approaches are based on:

• Giving reasons as to why each interpretation is not an answer-set

• Minimally inconsistent sets of rules

• Interactive, user-guided solving

Explanations

Answer-set Programming

Explanations for inconsistent programs are mostly considered for debugging

Approaches are based on:

• Giving reasons as to why each interpretation is not an answer-set

• Minimally inconsistent sets of rules

• Interactive, user-guided solving

Supported language features again vary

Explanations

Answer-set Programming

Explanations for inconsistent programs are mostly considered for debugging

Approaches are based on:

• Giving reasons as to why each interpretation is not an answer-set

• Minimally inconsistent sets of rules

• Interactive, user-guided solving

Supported language features again vary

The produced explanations are very technical!

Explanations

Answer-set Programming

Open Problems

Open Problems
• Most existing approaches lack support for language extensions

Open Problems
• Most existing approaches lack support for language extensions

• How can variables, external computations, theories or neuro-symbolic extensions be included?

Open Problems
• Most existing approaches lack support for language extensions

• How can variables, external computations, theories or neuro-symbolic extensions be included?

• To which detail should those extensions be involved?

Open Problems
• Most existing approaches lack support for language extensions

• How can variables, external computations, theories or neuro-symbolic extensions be included?

• To which detail should those extensions be involved?

• Nonmonotonicity poses challenges

Open Problems
• Most existing approaches lack support for language extensions

• How can variables, external computations, theories or neuro-symbolic extensions be included?

• To which detail should those extensions be involved?

• Nonmonotonicity poses challenges

• Miller1 argues that explanations should be causal, interactive and contrastive

1 Tim Miller (2019): Explanation in artificial intelligence: Insights from the social sciences, Artificial Intelligence

Open Problems
• Most existing approaches lack support for language extensions

• How can variables, external computations, theories or neuro-symbolic extensions be included?

• To which detail should those extensions be involved?

• Nonmonotonicity poses challenges

• Miller1 argues that explanations should be causal, interactive and contrastive

Contrastive Question: Why P and not Q?

1 Tim Miller (2019): Explanation in artificial intelligence: Insights from the social sciences, Artificial Intelligence

Open Problems
• Most existing approaches lack support for language extensions

• How can variables, external computations, theories or neuro-symbolic extensions be included?

• To which detail should those extensions be involved?

• Nonmonotonicity poses challenges

• Miller1 argues that explanations should be causal, interactive and contrastive

Contrastive Question: Why P and not Q?
Example:

Classifier

1 Tim Miller (2019): Explanation in artificial intelligence: Insights from the social sciences, Artificial Intelligence

Open Problems
• Most existing approaches lack support for language extensions

• How can variables, external computations, theories or neuro-symbolic extensions be included?

• To which detail should those extensions be involved?

• Nonmonotonicity poses challenges

• Miller1 argues that explanations should be causal, interactive and contrastive

Contrastive Question: Why P and not Q?
Example:

Classifier Crow

1 Tim Miller (2019): Explanation in artificial intelligence: Insights from the social sciences, Artificial Intelligence

Open Problems
• Most existing approaches lack support for language extensions

• How can variables, external computations, theories or neuro-symbolic extensions be included?

• To which detail should those extensions be involved?

• Nonmonotonicity poses challenges

• Miller1 argues that explanations should be causal, interactive and contrastive

Contrastive Question: Why P and not Q?
Example:

Classifier Crow

Why crow and not magpie?

1 Tim Miller (2019): Explanation in artificial intelligence: Insights from the social sciences, Artificial Intelligence

Open Problems
• Most existing approaches lack support for language extensions

• How can variables, external computations, theories or neuro-symbolic extensions be included?

• To which detail should those extensions be involved?

• Nonmonotonicity poses challenges

• Miller1 argues that explanations should be causal, interactive and contrastive

Contrastive Question: Why P and not Q?
Example:

Classifier Crow

Why crow and not magpie?
• Black beak

1 Tim Miller (2019): Explanation in artificial intelligence: Insights from the social sciences, Artificial Intelligence

Open Problems
• Most existing approaches lack support for language extensions

• How can variables, external computations, theories or neuro-symbolic extensions be included?

• To which detail should those extensions be involved?

• Nonmonotonicity poses challenges

• Miller1 argues that explanations should be causal, interactive and contrastive

Contrastive Question: Why P and not Q?
Example:

Classifier Crow

Why crow and not magpie?
• Black beak
• Feathers

1 Tim Miller (2019): Explanation in artificial intelligence: Insights from the social sciences, Artificial Intelligence

Open Problems
• Most existing approaches lack support for language extensions

• How can variables, external computations, theories or neuro-symbolic extensions be included?

• To which detail should those extensions be involved?

• Nonmonotonicity poses challenges

• Miller1 argues that explanations should be causal, interactive and contrastive

Contrastive Question: Why P and not Q?
Example:

Classifier Crow

Why crow and not magpie?
• Black beak
• Feathers
• Size

1 Tim Miller (2019): Explanation in artificial intelligence: Insights from the social sciences, Artificial Intelligence

Open Problems
• Most existing approaches lack support for language extensions

• How can variables, external computations, theories or neuro-symbolic extensions be included?

• To which detail should those extensions be involved?

• Nonmonotonicity poses challenges

• Miller1 argues that explanations should be causal, interactive and contrastive

Contrastive Question: Why P and not Q?
Example:

Classifier Crow

Why crow and not magpie?
• Black beak
• Feathers
• Size

1 Tim Miller (2019): Explanation in artificial intelligence: Insights from the social sciences, Artificial Intelligence

Open Problems
• Most existing approaches lack support for language extensions

• How can variables, external computations, theories or neuro-symbolic extensions be included?

• To which detail should those extensions be involved?

• Nonmonotonicity poses challenges

• Miller1 argues that explanations should be causal, interactive and contrastive

Contrastive Question: Why P and not Q?
Example:

Classifier Crow

Why crow and not magpie?
• Black beak
• Feathers
• Size
• Wing colour

1 Tim Miller (2019): Explanation in artificial intelligence: Insights from the social sciences, Artificial Intelligence

Open Problems
• Most existing approaches lack support for language extensions

• How can variables, external computations, theories or neuro-symbolic extensions be included?

• To which detail should those extensions be involved?

• Nonmonotonicity poses challenges

• Miller1 argues that explanations should be causal, interactive and contrastive

• How should we approach contrastive explanation for ASP?

Contrastive Question: Why P and not Q?
Example:

Classifier Crow

Why crow and not magpie?
• Black beak
• Feathers
• Size
• Wing colour

1 Tim Miller (2019): Explanation in artificial intelligence: Insights from the social sciences, Artificial Intelligence

Research Goals

Research Goals
• Explaining ASP extensions and advanced features

Research Goals
• Explaining ASP extensions and advanced features

- White-box, grey-box, black-box

Research Goals
• Explaining ASP extensions and advanced features

- White-box, grey-box, black-box

- Contrastive explanation through counterfactual reasoning

Research Goals
• Explaining ASP extensions and advanced features

- White-box, grey-box, black-box

- Contrastive explanation through counterfactual reasoning

• Explaining instead of debugging inconsistency

Research Goals
• Explaining ASP extensions and advanced features

- White-box, grey-box, black-box

- Contrastive explanation through counterfactual reasoning

• Explaining instead of debugging inconsistency

• Explainability in Equilibrium Logic

Research Goals
• Explaining ASP extensions and advanced features

- White-box, grey-box, black-box

- Contrastive explanation through counterfactual reasoning

• Explaining instead of debugging inconsistency

• Explainability in Equilibrium Logic

- Proof systems

Research Goals
• Explaining ASP extensions and advanced features

- White-box, grey-box, black-box

- Contrastive explanation through counterfactual reasoning

• Explaining instead of debugging inconsistency

• Explainability in Equilibrium Logic

- Proof systems

• Towards practical algorithms

Research Goals
• Explaining ASP extensions and advanced features

- White-box, grey-box, black-box

- Contrastive explanation through counterfactual reasoning

• Explaining instead of debugging inconsistency

• Explainability in Equilibrium Logic

- Proof systems

• Towards practical algorithms

Methodology

Research Goals
• Explaining ASP extensions and advanced features

- White-box, grey-box, black-box

- Contrastive explanation through counterfactual reasoning

• Explaining instead of debugging inconsistency

• Explainability in Equilibrium Logic

- Proof systems

• Towards practical algorithms

Formal concepts

Methodology

Research Goals
• Explaining ASP extensions and advanced features

- White-box, grey-box, black-box

- Contrastive explanation through counterfactual reasoning

• Explaining instead of debugging inconsistency

• Explainability in Equilibrium Logic

- Proof systems

• Towards practical algorithms

Formal concepts Analysis

Methodology

Research Goals
• Explaining ASP extensions and advanced features

- White-box, grey-box, black-box

- Contrastive explanation through counterfactual reasoning

• Explaining instead of debugging inconsistency

• Explainability in Equilibrium Logic

- Proof systems

• Towards practical algorithms

Formal concepts Analysis Prototypes

Methodology

Research Status
Publications
Explaining Answer-Set Programs with Abstract Constraint Atoms
Thomas Eiter and Tobias Geibinger
32rd International Joint Conference on Artificial Intelligence (IJCAI 2023)
Contributions: Formal notions of justification for ASP with choice and aggregates, Complexity Analysis

A Logic-based Approach to Contrastive Explainability for Neurosymbolic Visual Question Answering
Thomas Eiter, Tobias Geibinger, Nelson Higuera Ruiz and Johannes Oetsch
32rd International Joint Conference on Artificial Intelligence (IJCAI 2023)
Contributions: Contrastive explanation approach for the Visual Question Answering domain
Contrastive Explanations for Answer-Set Programs
Thomas Eiter, Tobias Geibinger and Johannes Oetsch
18th Edition of the European Conference on Logics in Artificial Intelligence (JELIA 2023)
Contributions: Problem independent formulation of contrastive explanation for ASP including study of complexity

Research Status
Explaining Answer-Set Programs with Abstract Constraint Atoms

Research Status

We introduced justifications for ASP programs with Abstract Constraint Atoms:

Explaining Answer-Set Programs with Abstract Constraint Atoms

Research Status

We introduced justifications for ASP programs with Abstract Constraint Atoms:

A = ⟨D, C⟩

Explaining Answer-Set Programs with Abstract Constraint Atoms

Research Status

We introduced justifications for ASP programs with Abstract Constraint Atoms:

A = ⟨D, C⟩

Domain

Explaining Answer-Set Programs with Abstract Constraint Atoms

Research Status

We introduced justifications for ASP programs with Abstract Constraint Atoms:

A = ⟨D, C⟩

Domain C ⊆ 2D

Explaining Answer-Set Programs with Abstract Constraint Atoms

Research Status

We introduced justifications for ASP programs with Abstract Constraint Atoms:

A = ⟨D, C⟩

An interpretation satisfies whenever I A I ∩ D ∈ C
Domain C ⊆ 2D

Explaining Answer-Set Programs with Abstract Constraint Atoms

Research Status

We introduced justifications for ASP programs with Abstract Constraint Atoms:

A = ⟨D, C⟩

An interpretation satisfies whenever I A I ∩ D ∈ C
Choice rules and aggregates are captured by abstract constraint atoms

Domain C ⊆ 2D

Explaining Answer-Set Programs with Abstract Constraint Atoms

Research Status

We introduced justifications for ASP programs with Abstract Constraint Atoms:

A = ⟨D, C⟩

An interpretation satisfies whenever I A I ∩ D ∈ C
Choice rules and aggregates are captured by abstract constraint atoms

Example:

Domain C ⊆ 2D

Explaining Answer-Set Programs with Abstract Constraint Atoms

Research Status

We introduced justifications for ASP programs with Abstract Constraint Atoms:

A = ⟨D, C⟩

An interpretation satisfies whenever I A I ∩ D ∈ C
Choice rules and aggregates are captured by abstract constraint atoms

Example:
#𝚜𝚞𝚖{𝟸 : 𝚊, 𝟷 : 𝚋, 𝟷 : 𝚌} > 𝟷

Domain C ⊆ 2D

Explaining Answer-Set Programs with Abstract Constraint Atoms

Research Status

We introduced justifications for ASP programs with Abstract Constraint Atoms:

A = ⟨D, C⟩

An interpretation satisfies whenever I A I ∩ D ∈ C
Choice rules and aggregates are captured by abstract constraint atoms

Example:
#𝚜𝚞𝚖{𝟸 : 𝚊, 𝟷 : 𝚋, 𝟷 : 𝚌} > 𝟷

A = ⟨{a, b, c}, {{a}, {b, c}, {a, b}, {a, c}, {a, b, c}}⟩

Domain C ⊆ 2D

Explaining Answer-Set Programs with Abstract Constraint Atoms

Research Status

We introduced justifications for ASP programs with Abstract Constraint Atoms:

A = ⟨D, C⟩

An interpretation satisfies whenever I A I ∩ D ∈ C
Choice rules and aggregates are captured by abstract constraint atoms

Example:
#𝚜𝚞𝚖{𝟸 : 𝚊, 𝟷 : 𝚋, 𝟷 : 𝚌} > 𝟷

A = ⟨{a, b, c}, {{a}, {b, c}, {a, b}, {a, c}, {a, b, c}}⟩

I = {a, b, c}

Domain C ⊆ 2D

Explaining Answer-Set Programs with Abstract Constraint Atoms

Research Status

We introduced justifications for ASP programs with Abstract Constraint Atoms:

A = ⟨D, C⟩

An interpretation satisfies whenever I A I ∩ D ∈ C
Choice rules and aggregates are captured by abstract constraint atoms

Example:
#𝚜𝚞𝚖{𝟸 : 𝚊, 𝟷 : 𝚋, 𝟷 : 𝚌} > 𝟷

A = ⟨{a, b, c}, {{a}, {b, c}, {a, b}, {a, c}, {a, b, c}}⟩

I = {a, b, c} I ⊧ A

Domain C ⊆ 2D

Explaining Answer-Set Programs with Abstract Constraint Atoms

Research Status

We introduced justifications for ASP programs with Abstract Constraint Atoms:

A = ⟨D, C⟩

An interpretation satisfies whenever I A I ∩ D ∈ C
Choice rules and aggregates are captured by abstract constraint atoms

Example:
#𝚜𝚞𝚖{𝟸 : 𝚊, 𝟷 : 𝚋, 𝟷 : 𝚌} > 𝟷

A = ⟨{a, b, c}, {{a}, {b, c}, {a, b}, {a, c}, {a, b, c}}⟩

I = {a, b, c}

Model-based justifications:

I ⊧ A

Domain C ⊆ 2D

Explaining Answer-Set Programs with Abstract Constraint Atoms

Research Status

We introduced justifications for ASP programs with Abstract Constraint Atoms:

A = ⟨D, C⟩

An interpretation satisfies whenever I A I ∩ D ∈ C
Choice rules and aggregates are captured by abstract constraint atoms

Example:
#𝚜𝚞𝚖{𝟸 : 𝚊, 𝟷 : 𝚋, 𝟷 : 𝚌} > 𝟷

A = ⟨{a, b, c}, {{a}, {b, c}, {a, b}, {a, c}, {a, b, c}}⟩

I = {a, b, c}

⟨{a}, ∅⟩
Model-based justifications:

I ⊧ A

Domain C ⊆ 2D

Explaining Answer-Set Programs with Abstract Constraint Atoms

Research Status

We introduced justifications for ASP programs with Abstract Constraint Atoms:

A = ⟨D, C⟩

An interpretation satisfies whenever I A I ∩ D ∈ C
Choice rules and aggregates are captured by abstract constraint atoms

Example:
#𝚜𝚞𝚖{𝟸 : 𝚊, 𝟷 : 𝚋, 𝟷 : 𝚌} > 𝟷

A = ⟨{a, b, c}, {{a}, {b, c}, {a, b}, {a, c}, {a, b, c}}⟩

I = {a, b, c}

⟨{a}, ∅⟩ ⟨{b, c}, ∅⟩
Model-based justifications:

I ⊧ A

Domain C ⊆ 2D

Explaining Answer-Set Programs with Abstract Constraint Atoms

Research Status

We introduced justifications for ASP programs with Abstract Constraint Atoms:

A = ⟨D, C⟩

An interpretation satisfies whenever I A I ∩ D ∈ C
Choice rules and aggregates are captured by abstract constraint atoms

Example:
#𝚜𝚞𝚖{𝟸 : 𝚊, 𝟷 : 𝚋, 𝟷 : 𝚌} > 𝟷

A = ⟨{a, b, c}, {{a}, {b, c}, {a, b}, {a, c}, {a, b, c}}⟩

I = {a, b, c}

⟨{a}, ∅⟩ ⟨{b, c}, ∅⟩
Model-based justifications:

I ⊧ A

Domain C ⊆ 2D

minimal partial models

Explaining Answer-Set Programs with Abstract Constraint Atoms

Research Status

We introduced justifications for ASP programs with Abstract Constraint Atoms:

A = ⟨D, C⟩

An interpretation satisfies whenever I A I ∩ D ∈ C
Choice rules and aggregates are captured by abstract constraint atoms

Example:

We also define rule-based justifications which take the application of rules into account

#𝚜𝚞𝚖{𝟸 : 𝚊, 𝟷 : 𝚋, 𝟷 : 𝚌} > 𝟷

A = ⟨{a, b, c}, {{a}, {b, c}, {a, b}, {a, c}, {a, b, c}}⟩

I = {a, b, c}

⟨{a}, ∅⟩ ⟨{b, c}, ∅⟩
Model-based justifications:

I ⊧ A

Domain C ⊆ 2D

minimal partial models

Explaining Answer-Set Programs with Abstract Constraint Atoms

Research Status
Publications
Explaining Answer-Set Programs with Abstract Constraint Atoms
Thomas Eiter and Tobias Geibinger
32rd International Joint Conference on Artificial Intelligence (IJCAI 2023)
Contributions: Formal notions of justification for ASP with choice and aggregates, Complexity Analysis

A Logic-based Approach to Contrastive Explainability for Neurosymbolic Visual Question Answering
Thomas Eiter, Tobias Geibinger, Nelson Higuera Ruiz and Johannes Oetsch
32rd International Joint Conference on Artificial Intelligence (IJCAI 2023)
Contributions: Contrastive explanation approach for the Visual Question Answering domain
Contrastive Explanations for Answer-Set Programs
Thomas Eiter, Tobias Geibinger and Johannes Oetsch
18th Edition of the European Conference on Logics in Artificial Intelligence (JELIA 2023)
Contributions: Problem independent formulation of contrastive explanation for ASP including study of complexity

Research Status
A Logic-based Approach to Contrastive Explainability for Neurosymbolic VQA

Research Status

Is there an object of the same
color as the small one?

Object
Recognition
(YOLOv5)

Question
Parsing
(LSTM)

Neural Module

Theory
(ASP)

Abduction
(ASP)

NSQVASP

Logical Module

Foil:
No

Answer:
Yes

A Logic-based Approach to Contrastive Explainability for Neurosymbolic VQA

VQA Framework using ASP

Research Status

Is there an object of the same
color as the small one?

Object
Recognition
(YOLOv5)

Question
Parsing
(LSTM)

Neural Module

Theory
(ASP)

Abduction
(ASP)

NSQVASP

Logical Module

Foil:
No

Answer:
Yes

A Logic-based Approach to Contrastive Explainability for Neurosymbolic VQA

VQA Framework using ASP

Example:

Research Status

Is there an object of the same
color as the small one?

Object
Recognition
(YOLOv5)

Question
Parsing
(LSTM)

Neural Module

Theory
(ASP)

Abduction
(ASP)

NSQVASP

Logical Module

Foil:
No

Answer:
Yes

A Logic-based Approach to Contrastive Explainability for Neurosymbolic VQA

VQA Framework using ASP

Example:

What size is the cylinder that is left of the brown
metal thing that is left of the big sphere?

Research Status

Is there an object of the same
color as the small one?

Object
Recognition
(YOLOv5)

Question
Parsing
(LSTM)

Neural Module

Theory
(ASP)

Abduction
(ASP)

NSQVASP

Logical Module

Foil:
No

Answer:
Yes

A Logic-based Approach to Contrastive Explainability for Neurosymbolic VQA

VQA Framework using ASP

Example:

What size is the cylinder that is left of the brown
metal thing that is left of the big sphere?
Answer: small

Research Status

Is there an object of the same
color as the small one?

Object
Recognition
(YOLOv5)

Question
Parsing
(LSTM)

Neural Module

Theory
(ASP)

Abduction
(ASP)

NSQVASP

Logical Module

Foil:
No

Answer:
Yes

A Logic-based Approach to Contrastive Explainability for Neurosymbolic VQA

VQA Framework using ASP

Example:

What size is the cylinder that is left of the brown
metal thing that is left of the big sphere?
Answer: small

Why small and not large?

Research Status

Is there an object of the same
color as the small one?

Object
Recognition
(YOLOv5)

Question
Parsing
(LSTM)

Neural Module

Theory
(ASP)

Abduction
(ASP)

NSQVASP

Logical Module

Foil:
No

Answer:
Yes

A Logic-based Approach to Contrastive Explainability for Neurosymbolic VQA

VQA Framework using ASP

Example:

What size is the cylinder that is left of the brown
metal thing that is left of the big sphere?
Answer: small

Why small and not large?

large

Research Status
Publications
Explaining Answer-Set Programs with Abstract Constraint Atoms
Thomas Eiter and Tobias Geibinger
32rd International Joint Conference on Artificial Intelligence (IJCAI 2023)
Contributions: Formal notions of justification for ASP with choice and aggregates, Complexity Analysis

A Logic-based Approach to Contrastive Explainability for Neurosymbolic Visual Question Answering
Thomas Eiter, Tobias Geibinger, Nelson Higuera Ruiz and Johannes Oetsch
32rd International Joint Conference on Artificial Intelligence (IJCAI 2023)
Contributions: Contrastive explanation approach for the Visual Question Answering domain
Contrastive Explanations for Answer-Set Programs
Thomas Eiter, Tobias Geibinger and Johannes Oetsch
18th Edition of the European Conference on Logics in Artificial Intelligence (JELIA 2023)
Contributions: Problem independent formulation of contrastive explanation for ASP including study of complexity

Research Status
Contrastive Explanations for Answer-Set Programs

We consider the following setting:

Research Status
Contrastive Explanations for Answer-Set Programs

We consider the following setting:

bird ← feathers, beak, shape
crow ← bird, dark wings

ASP Program P

magpie ← bird, whitewings

feathers, beak, shape, dark wings

Research Status
Contrastive Explanations for Answer-Set Programs

We consider the following setting:

Answer-Set I
crow, feathers, beak, shape, darkwingsbird ← feathers, beak, shape

crow ← bird, dark wings

ASP Program P

magpie ← bird, whitewings

feathers, beak, shape, dark wings

Research Status
Contrastive Explanations for Answer-Set Programs

We consider the following setting:

Answer-Set I
crow, feathers, beak, shape, darkwingsbird ← feathers, beak, shape

crow ← bird, dark wings

ASP Program P

magpie ← bird, whitewings

feathers, beak, shape, dark wings

E ⊆ I
Explanandum

Research Status
Contrastive Explanations for Answer-Set Programs

We consider the following setting:

Answer-Set I
crow, feathers, beak, shape, darkwingsbird ← feathers, beak, shape

crow ← bird, dark wings

ASP Program P

magpie ← bird, whitewings

feathers, beak, shape, dark wings

E ⊆ I
Explanandum

F ∩ I = ∅
Foil

Research Status
Contrastive Explanations for Answer-Set Programs

We consider the following setting:

Answer-Set I
crow, feathers, beak, shape, darkwingsbird ← feathers, beak, shape

crow ← bird, dark wings

ASP Program P

magpie ← bird, whitewings

feathers, beak, shape, dark wings

Why rather than ?E F

E ⊆ I
Explanandum

F ∩ I = ∅
Foil

Research Status
Contrastive Explanations for Answer-Set Programs

We consider the following setting:

Answer-Set I
crow, feathers, beak, shape, darkwingsbird ← feathers, beak, shape

crow ← bird, dark wings

ASP Program P

magpie ← bird, whitewings

feathers, beak, shape, dark wings

Why rather than ?E F

E ⊆ I
Explanandum

F ∩ I = ∅
Foil

We want to find a program with such that and P′￼ I′￼∈ AS(P′￼) F ⊆ I′￼ E ⊈ I′￼

Next Steps

Next Steps

Continue investigation of contrastive explanation

Next Steps

Continue investigation of contrastive explanation

• Sharpen definitions and theoretical foundation

• Encodings and/or algorithms

Next Steps

Continue investigation of contrastive explanation

• Sharpen definitions and theoretical foundation

• Encodings and/or algorithms

Study how extensions can be incorporated in the explanations

• white-box, black-box, grey-box

Next Steps

Continue investigation of contrastive explanation

• Sharpen definitions and theoretical foundation

• Encodings and/or algorithms

Study how extensions can be incorporated in the explanations

• white-box, black-box, grey-box

Development of a prototype using contrastive and non-contrastive explanations
interactively

