Foundations of logic programming semantics:
an operator-based perspective

Jesse Heyninck
February 2, 2024

Open Universiteit, the Netherlands
University of Cape Town, South Africa

Logic Programming

e Specific, powerful family of languages for knowledge
representation (problems up to second level of polynomial
hierarchy).

e Efficient, user-friendly solvers (clingo!, DLV) and tools.?

e Hallmark of the declarative programming approach: describe a

problem (without having to describe how to find solutions).

node(1..6).
edge(1,2;1,3;1,4;2,4;2,5;2,6;3,1;3,4;3,5;4,1).
col(r). col(g). col(b).

{ color(X,C) : col(C) } =1 :- node(X).
:— edge(X,Y), color(X,C), color(Y,C).

https://potassco.org/clingo/run/
2https://potassco.org/related/ and their weekly seminar.

https://potassco.org/clingo/run/
https://potassco.org/related/

Example Applications: Student Projects

e Puzzles and games:
e Rush hour
e Rubics
e Futoshiki
e Kakurasu
e |Q Puzzler Pro

Generating healthy diets.

Procedural content generation.

Parsing grammatical structure of Latin.

Minimum Sum Partition Problem.

Example Applications: Knowledge Representation

e Solvers or reasoners for:
e Formal argumentation [DRWW20]
e AGM Belief Revision [AP17, BNBPWO04]
e Boolean networks [KB19]
e Ordered disjunction [BNS02]
e Description Logics [Swi04]

Inconsistency Measures [KT21]

Linear temporal logic [KCG23]
Logic programming (1?) [KRSW23]
Axiom pinpointing in ontologies [HMP*23]

The ASP-workflow

Program ‘

Propositional Program ‘

Answer Sets

{

penguin(tweety).
bird(zazu).

bird(X)+ penguin(X).
flies(X)<— bird(X), = ab(X).
ab(X)< penguin(X).

penguin(tweety).

bird(zazu).

bird(tweety)<— penguin(tweety).
flies(tweety)<— bird(tweety), — ab(tweety).
ab(tweety)< penguin(tweety).
bird(zazu)< penguin(zazu).

flies(zazu)<— bird(zazu), — ab(zazu).

ab(zazu)+ penguin(zazu).

penguin(tweety) bird(tweety) ab(tweety)
bird(zazu) bird(zazu) flies(zazu)

The ASP-workflow

Focus of today:

penguin(tweety).

bird(zazu).

bird(tweety)+ penguin(tweety).
flies(tweety)< bird(tweety), — ab(tweety).

’ Propositional Program ‘

ab(tweety)<— penguin(tweety).
bird(zazu)+ penguin(zazu).
flies(zazu)<— bird(zazu), — ab(zazu).
ab(zazu)<— penguin(zazu).

penguin(tweety) bird(tweety) ab(tweety)
Answer Sets . . .
bird(zazu) bird(zazu) flies(zazu)

What are answer sets and what is so special about them?

The ASP-workflow

Focus of today:

’ Propositional Program ‘

Answer Sets {

penguin(tweety).

bird(zazu).

bird(tweety)+ penguin(tweety).
flies(tweety)< bird(tweety), — ab(tweety).
ab(tweety)<— penguin(tweety).
bird(zazu)+ penguin(zazu).

flies(zazu)<— bird(zazu), — ab(zazu).
ab(zazu)<— penguin(zazu).

penguin(tweety) bird(tweety) ab(tweety)
bird(zazu) bird(zazu) flies(zazu)

What are answer sets and what is so special about them?f

TInterested in other aspects

of logic programming? I'll see you in a week or

take a look at https://teaching.potassco.org/. 5

https://teaching.potassco.org/

Goals and Structure

e Provide a gentle introduction to the semantics of logic
programming:

Supported models

e Kripke-Kleene models
e Stable models

e Well-founded model

e |llustrate the operator-based approach to KR with a
paradigmatic example.
e Basic constructions of approximation fixpoint theory (for logic
programs).
e From logic programming to operators.

Almost nothing of this is my work

e Operator-based approach has driven logic programming since
its inception [VGRS91, Fit06].

e Studied algebraically by Denecker, Marek and Truszczynski
[DMTO00].

e | extended and worked in this algebraic framework with Ofer
Arieli and Bart Bogaerts.

Goals and Structure

Syntax of Logic Programs

Semantics of Positive Programs
Semantics of Normal Logic Programs
Stable Semantics

Approximation Fixpoint Theory

Round up

Syntax of Logic Programs

Syntax of Logic Programs

Set of atoms A ={a, b,c,p,q,r,a1,az,...}

a+ by,....,b,,—c1,...,Cm

e Program is a set of rules.
e Rule is positive if m = 0.

e Program is positive if all the rules are positive.

Semantics of Positive Programs

What are the semantics of logic programs?

p <+ q.
Classical models? 0, {p},{p, q}.
Notice: a formula follows from every classical model if it follows

from (.

i{q}

10

What are the semantics of logic programs?

pq., q<.

11

What are the semantics of logic programs?

pq., q<.

Classical models? , ,{p,q}.

11

What are the semantics of logic programs?

pq., q<.

Classical models? , ,{p,q}.

{p}: i{q}

11

Tp : p(Ap) — p(Ap)
Tp(x)={ala« b1,..., b, € P and by, ..., b, € x}

|0 {p} {a} {pa} ol
) [0 @ (pat pay 02

12

Models and Fixpoints

Definition
X is a post-fixpoint of Tp if Tp(x) C x.

Intuition: everything | can derive from x using P is in x.
Models of P.

Example

P={p+aq} {p.q}

" 13

Models and Fixpoints

Definition
X is a post-fixpoint of Tp if Tp(x) C x.

Intuition: everything | can derive from x using P is in x.

Models of P.
Example
P={p«q}

\m—; 13

Models and Fixpoints

Definition
X is a post-fixpoint of Tp if Tp(x) C x.

Intuition: everything | can derive from x using P is in x.
Models of P.

Definition
x is a fixpoint of Tp if Tp(x) = x.

Intuition: same, plus everything in x is derivable.
Supported models of P.

Example
P={p+aq}

m;:. 13

Models and Fixpoints

Definition
X is a post-fixpoint of Tp if Tp(x) C x.

Intuition: everything | can derive from x using P is in x.
Models of P.

Definition
x is a fixpoint of Tp if Tp(x) = x.

Intuition: same, plus everything in x is derivable.
Supported models of P.

Example

P={p+. q¢q} i

C vl{q}

Models and Fixpoints

e For positive programs, Tp has a unique least fixpoint x.
e |t is also the least pre-fixpoint.

e We can compute it by iterating Tp starting from (:

TP(' 00 TP(@) 20) = Uizo T7i9(®)
And this is possible in polynomial time.

14

Models and Fixpoints

e For positive programs, Tp has a unique least fixpoint x.
e Any fixpoint y of Tp will be a superset: x C y.
e It is also the least pre-fixpoint.
e Any pre-fixpoint y of Tp will be a superset: x C y.
e P has a least model,
i.e. any model of P is included in y.
e If something follows from every model of P, it follows from x.

e We can compute it by iterating Tp starting from ():

To(... Tp(0)...)
And this is possible in polynomial time.

14

Models and Fixpoints

e For positive programs, Tp has a unique least fixpoint x.
e Any fixpoint y of Tp will be a superset: x C y.
e It is also the least pre-fixpoint.

e Any pre-fixpoint y of Tp will be a superset: x C y.
e P has a least model,
i.e. any model of P is included in y.
e If something follows from every model of P, it follows from x.

e We can compute it by iterating Tp starting from ():
To(... Tp(0)...)
And this is possible in polynomial time.
Underlying result: A C-monotonic operator over a complete
lattice admits a least fixpoint.

14

Least fixpoint computation

P={p<. q«p r<pq}

- }‘ - ’{q .

[} \ ! B \ ’{q} |

ii5)

Least fixpoint computation

P={p+. qg<p r<pq}

- }‘ - ’{q .

W @ T{q}\

ii5)

Least fixpoint computation

P={p«+. g+ p. r+pq.}

{p, q; f}

- }‘ . ’{q .

W @ T{q}\

ii5)

Least fixpoint computation

P={p«+. g+ p. r+pq.}

{p,q,r}

[{p, q}“\]{q r}]

]

W @ T{q}\

ii5)

Least fixpoint # unique fixpoint

Example (P = {p < p.})

] [{@

16

Semantics of Normal Logic
Programs

Enters Negation

p g

How to extend our operator?

17

Enters Negation

p < q
How to extend our operator?
Easy:
Tp(x)={a| a<«+ b1,...,by,—C1,...,7Cyn € P, and
bi,...,bn € x, and c1,...,cm & x}

)

17

Enters Negation

p g

How to extend our operator?

Easy:
Tp(x)={a| a<«+ b1,...,by,—C1,...,7Cyn € P, and
bi,...,bn € x, and c1,...,cm & x}
@ (o}

N

17

Great, thanks for your attention

18

Great, thanks for your attention

P ={p <+ —p}

18

No unique fixpoint

P ={p+ —q;q <+ —p}

il [() =

19

Problems with negation

e There might not be a fixpoint.
e There might be multiple minimal fixpoints.

e We don't know how to find fixpoints.

20

Problems with negation

e There might not be a fixpoint.
e There might be multiple minimal fixpoints.
e We don't know how to find fixpoints.

e Anyone sees what went wrong with our operator?

20

Problems with negation

e There might not be a fixpoint.

e There might be multiple minimal fixpoints.

e We don't know how to find fixpoints.

e Anyone sees what went wrong with our operator?

= It is not a monotonic operator

<m (o) =

20

Approximations

e Pairs of sets of atoms (x, y).

e x contains all atoms that are definitely true.
e y contains all atoms that are possibly true.

21

Approximations

e Pairs of sets of atoms (x, y).

e x contains all atoms that are definitely true.
e y contains all atoms that are possibly true.

e How to compare such pairs of sets?

o (x1,y1) <t (x2,y2) if x1 C x2 and y1 C y».
o (x1,%1) <i(x2,)2) if x1 C x2 and y» C yy.

21

Approximations

e Pairs of sets of atoms (x, y).

e x contains all atoms that are definitely true.
e y contains all atoms that are possibly true.

e How to compare such pairs of sets?

o (x1,)1) <t (x2,y2) if 0 € X2 and y1 C yo.
o (x1,%1) <i(x2,)2) if x1 C x2 and y» C yy.

Example
({p},{p.q}): p is true and q can be true.

({r}. {r}) <: {r}.{p,q})
({r},{p,q}) <i {p}, {Pr})

21

Graphical Depiction

({p. q},0) <i
.al ({g}.0) [{p10)] |dpahdah)] [(pat{pD)]
2 W w9 [he)] [@heh] [eed)]
[e]
[0.{p})] [{ah{p.ah)| [} {p.a})]
(0, {p,q})

22

Graphical Depiction

({p.q}.0) <i
ol ({a}.,0) [der0)] [dpahiad)] [dp.ah{pD)]
{p} D e [Gw)] [@he)] [

[{abtr.a)] [Hrh{p.a})]

0.{p,q})

22

Graphical Depiction

({p.q).0) <
.al ({a}.9) [der0)] [dpahiad)] [dp.ah{pD)]
b G e (G TTRCTD
[{a}{p.a))| [(r}.{p.a})]
(0. {p.q})

22

Graphical Depiction

({p,q},0)

IA

(p,q} ({a}.9) [der0)] [dpahiad)] [dp.ah{pD)]

(o}

(0,{a}) [0.{p)] [datdie.a)] [drhip.aD)]

0.{p,q})

22

Approximations as Four-Valued Interpretations

F, -U=Uand —C=C
if p€xand p ey,
if p xand p ey,
if pgxand pdy,
ifpexand pey.
o (x,¥)(=0) = —(x,)(®),
o (%, Y)W A @) = lub< {(x,y)(9), (x,y)(¥)},
o (X,)V ¢) = glb< {(x,y)(9), (x,y)(¥)}.

A m c 4 |

Example

{pip,aN)P) =T ({p}.{p.a})(@)=U ({p},{p,q})(r)=F.

({pt{p.a)(=p) =F ({p},{p.q})(=q) =U
{p}{p.at)pAg)=U ({p}.{p,q})(@Vr)=U 23

Approximating Tp (from below)

ICp : Ax A Ax A

24

Approximating Tp (from below)

ICp:leA'—).AX

We input an approximation and output an approximation.

Ich(x,y)={ac Alaeby,..., by, —¢C1y. .., Cm € P,

24

Approximating Tp (from below)

ICp cAX A= A X
We input an approximation and output an approximation.

ZC%(x,y):{aeAMebl by, —c1,...,—Ccm €P

or, equivalently

ICé;(x,y) ={aeA|a+b,..., b,,—c1,. .., —cm € P,
(5, y)(bL A...... bn A—c1 A ... A —cm) € {T,C}}

24

Approximating Tp (from below)

IC’p:leA'—).AX

We input an approximation and output an approximation.

or, equivalently

ICh(x,y)={a€ Ala< by,... by=c1,...,~Cm € P,
(X,}/)(bl VAN bn/_‘cl A"'/\ﬁcm) € {T C}}

Example ({p < p,~q})
¢ ({p} {p,a}) =0

ZCp({r}. {r}) = {p}

24

Approximating Tp (from above)

ICp : Ax A Ax A

We input an approximation and output an approximation.

25

Approximating Tp (from above)

ICp Ax A x A

We input an approximation and output an approximation.

ICh(x,y)={ac Ala<+ by,..., by, —¢C1y. .., Cm € P,

25

Approximating Tp (from above)

ICp Ax A x A

We input an approximation and output an approximation.

ICh(x,y)={ac Ala<+ by,..., by, —c1,...,—Cm €P

or, equivalently

ICH(x,y)={ac Ala+ bi,..., b,,—c1,...,m¢cm € P,
()b A bp A=c1 A...A-cm) € {U,T}}

25

Approximating Tp (from above)

ICp: AxA— x A
We input an approximation and output an approximation.

ICh(x,y)={ac Ala<+ b

or, equivalently

IC%(X,y):{aEA|a<—b1 bn)_‘clﬁ'~~-ﬁcm€7),
(x5, ¥)(br A ... by A=ci A...A=cp) € {U,T}}

Teninde (5= sy=al)
T e

7C%({p}, {p}) = {p}

25

The Approximation Operator ZCp (for P = {p < p,—q})

ICP(X7Y) = (IC%’(XJ/)?IC%(X?)/))

({a}.0)

[{p.a}{a))] [{p.a}.{p})]

Clo.9F—dantan] C [dphipb)] (e a1, 1P aD)]

(0.{q})

[} {p.)] [P} p.a})]

26

Properties of ZCp

e 7Cp approximates Tp:
ICp(x,x) = (Tp(x), Tp(x)) for any x C A.

27

Properties of ZCp

e 7Cp approximates Tp:
ICp(x,x) = (Tp(x), Tp(x)) for any x C A.

e 7Cp is <;-monotonic:
if (x1,y1) <i (x2,y2) then ZCp(x1, y1) <i ZCp(x2, y2).

27

Properties of ZCp

e 7Cp approximates Tp:
ICp(x,x) = (Tp(x), Tp(x)) for any x C A.

e 7Cp is <;-monotonic:
if (x1,y1) <i (x2,y2) then ZCp(x1, y1) <i ZCp(x2, y2).

We say ZCp is an approximation operator. It is also symmetric, in
the sense that ZCp(x,y) = (ZCh(x,y), ICp(y, X))

27

Kripke-Kleene Fixpoint

The <;-monotonicity is our indulgentia back into Tarski's heaven:

Proposition '
ICp has a least fixpoint, obtainable as | J;~o ZCp(0, A).

28

Kripke-Kleene Fixpoint

The <;-monotonicity is our indulgentia back into Tarski's heaven:

Proposition ,
ICp has a least fixpoint, obtainable as | J;~o ZCp(0, A).

o ZC5(0, A) is called the Kripke-Kleene Fixpoint
i>0 P

28

Kripke-Kleene Fixpoint

The <;-monotonicity is our indulgentia back into Tarski's heaven:

Proposition ,
ICp has a least fixpoint, obtainable as | J;~o ZCp(0, A).

Ui»o0ZCi(, A) is called the Kripke-Kleene Fixpoint
More good news:

Proposition .
For any fixpoint of x = Tp(x), U0 ZCp(0, A) <i (x,x).

28

Kripke-Kleene Fixpoint

The <;-monotonicity is our indulgentia back into Tarski's heaven:

Proposition ,
ICp has a least fixpoint, obtainable as | J;~o ZCp(0, A).

Ui»o0ZCi(, A) is called the Kripke-Kleene Fixpoint
More good news:

Proposition .
For any fixpoint of x = Tp(x), U0 ZCp(0, A) <i (x,x).

Proposition '
Uis0 ZCp(0, A) is consistent (i.e. where | J;5o ZCp (0, A) = (x,y),

xCy).

28

Kripke-Kleene Fixpoint

The <;-monotonicity is our indulgentia back into Tarski's heaven:

Proposition ,
ICp has a least fixpoint, obtainable as | J;~o ZCp(0, A).

Ui»o0ZCi(, A) is called the Kripke-Kleene Fixpoint
More good news:

Proposition .
For any fixpoint of x = Tp(x), U0 ZCp(0, A) <i (x,x).

Proposition '
Uis0 ZCp(0, A) is consistent (i.e. where | J;5o ZCp (0, A) = (x,y),

xCy).

If (x,y) = ZCp(x, y) then we call it a partial supported model.

28

Example: P = {p < q + —p}

({p,q}.0)

]({p},é)\]({p,"q},{q})\ (e} pD)]

©9] [CleneD] [e

[0.0e0] [(artead] [(ohipa)]

29

The Approximation Operator ZCp (for P = {p < p,—q})

ICP(X7Y) = (IC%’(XJ/)?IC%(X?)/))

({ah.0) [P, ah {a})] [{p,a} {pD)]

00— dantan] C [dphiph)] [(tp.a%. (. 9))]

(0.{a}) [(ah{p.a))] (e} {p.a))]

30

The Approximation Operator ZCp (for P = {p < p,—q})

ICP(X7Y) = (IC%(XJ/)?IC%(XJ/))

Kripke-Kleene Fixpoint

({ah.0) [P, ah {a})] [{p,a} {pD)]

HJonf——darta] C Jdered] [dpakipad]

0.{a) C\myun)]

30

The Approximation Operator ZCp (for P = {p < p,—q})

ICP(X7Y) = (IC%’(XJ/)?IC%(X?)/))

Partial Supported models

({p,q},0)

({a}.0) (@)0 [(p.a}.{a})] [(p.). {p))]

CH (@] C [EEE [k

0-{a)) CWMA)]

30

The Approximation Operator ZCp (for P = {p < p,—q})

ICP(X7Y) = (IC%(XJ/)?IC%(XJ/))

Supported models

({a}.0) (@)0 [(p.a}.{a})] [(p.). {p))]

Cl— (@] C B [Cakd

0-{a)) C\myun)]

30

Example: P = {p + —q;q < —p}

({p.q}.0)

]({p},é)\]({p,"q},{q})\ (e, a}. {pD)]

(0.9] Cltarian] Claneh] [i)

(0.0o0] [Gantead] [Gohiea)]

31

Example: P = {p + —q;q < —p}

({p.q}.0)

({a},0)]_({p},é)_\]({p,"q},{q})\ (XA

[©.0] (]({_qh{q_})\C]({_p},{p}v)\ [(EEREX

@ {q})]w{p})\ [l ipad] [(ohip.ab)]
.(@,{p.,;v})

31

Stable Semantics

Example: Kripke-Kleene is rather weak

p< 7q;q9 < g
({p,q},0)

]({q},@)\]({p},b)\]({p 9 a}) \]({p a}, {p})|

ywm\]({q} {q})C | ({p‘,q}i/{p,q})

!(Mq})\ !(w {p})\]({q} (5.9} \ ! (e} {p.a))]

0. {p, é})
32

Example: Kripke-Kleene is rather weak

P={p+—q g+ q}

Construction of the Kripke-Kleene fixpoint:

e ZCp(0,{p,q}) = (0, {p, q})-
e Fixpoint reached.

Can't get rid of the self-supporting atom g in the upper bound.

33

Example: Kripke-Kleene is rather weak

P={p+ ~q g« q}
Construction of the Kripke-Kleene fixpoint:
e ZCp(0,{p,q}) = (0, {p, q})-
e Fixpoint reached.
Can't get rid of the self-supporting atom g in the upper bound.

Assuming that no atom is certainly true, construct the smallest
upper bound possible:

7¢5(0,0) = {p}

ZCp(0,{p}) = {p}

33

Example: Kripke-Kleene is rather weak

P={p+ ~q g« q}
Construction of the Kripke-Kleene fixpoint:

o ICp(0,{p,q}) = (0, {p, q}).
e Fixpoint reached.

Can't get rid of the self-supporting atom g in the upper bound.

Assuming that no atom is certainly true, construct the smallest
upper bound possible:

7¢5(0,0) = {p}

ZCp(0,{p}) = {p}

As IC%((,-) is a C-monotonic operator, it admits a least fixed

point.
33

Stable Operator

S(ZCp)(y) = Ifp(ZCp (-, v))

34

Stable Operator

S(ZCp)(y) = Ifp(ZCp (-, v))

Example ({p < —q; g < q})
S(zCh)({p, q}) = 0 since:
ICH(0, {p. q}) = 0: fixemptysetpoint reached.

34

Stable Operator

S(ZCp)(y) = Ifp(ZCp (-, v))

S(ZCH)(x) = Ip(TCH(x,) = (ZCh (-, X))

Example ({p < —q; g < q})
S(zCh)({p, q}) = 0 since:
ICH(0, {p. q}) = 0: fixemptysetpoint reached.

34

Stable Operator

S(ZCp)(y) = Ifp(ZCp (-, v))

S(ZCH)(x) = Ip(TCH(x,) = (ZCh (-, X))

Example ({p < —q; g < q})

S(zCh)({p, q}) = 0 since:
ICH(0, {p. q}) = 0: fixemptysetpoint reached.

S(ZeL)(0) = {p} since:

7¢5(0,0) = {p}

ZCH(0,{p}) = {p}: fixpoint reached. 34

Stable Operator

S(ZCH)(y) = Io(ZCh (-, ¥))
S(ZCH)(x) = Ip(TCH(x,) = (ZCh (-, X))

S(ZCp)(x,y) = (S(ZCP)(y), S(TCH)(x))

Example ({p < —q; g < q})

S(zCh)({p, q}) = 0 since:
ICH(0, {p. q}) = 0: fixemptysetpoint reached.

S(ZeL)(0) = {p} since:

7¢5(0,0) = {p}

ZCH(0,{p}) = {p}: fixpoint reached. 34

Stable Operator: Example {p < —q;q < ¢}

S(Z¢cp)({p: q}) = Ifp(ZCp (-, {p, q}))

[({a}.0)]]({p},b)\]({‘p,"q},{q})\]({p,q},{p})\

(©0] [Ga)] [(he)] [(ea o)

[©D] [0 [dahiean)] ()]

Clotman]

85

Stable Operator: Example {p < —q;q < ¢}

S(ZC%)(0) = Ip(ZCH(0,-))

({p.a}.0)

]({q},m\]({p},b)\]({‘p,"q},{q})\]({p,q},{p})\

\ !({q} {q})\ (1. 7)] (e, (p.aD)]

[@1a))] Cy(@ {p})\ (@), (oD (2 p.))]

Cloea]

85

Stable Operator: Example {p < —q;q < ¢}

S(ZCp)(0, {p. q}) = (S(ZCH){p, a}), S(ZCH)((0))
({p.q}.9)

]({q},m\]({p},b)\]({‘p,"q},{q})\]({p,q},{p})\

\ !({q} {q})\ (1. 7)] (e, (p.aD)]

[@1a))] Cy(@ {p})\ (@), (oD (2 p.))]

C .00

85

Stable Operator: Example {p < —q;q < ¢}

S(ZCp)({p}) = Ifp(ZCp(-,{P}))
((e.1.0)

]({q},m\]({p},b)\]({p 9 o)) \]({p a}, {p})|

]((010)\: {q} {q})\ C[(o}, {p} \ ! {p a}, {p.q})]

](ﬂ{q})'\](@ {p})\]({q} (p.a)) \]({p} {p.q})]

@, {p, q})

85

Stable Operator: Example {p < —q;q < ¢}

S(ZC%)(0) = Ip(ZCH(0,-))

((e.1.0)

]({q},m\]({p},b)\]({p 9 o)) \]({p a}, {p})|

\ !({q} {q})\ C[(e} (2] \ ! {p i pa))]

A

[{q})\ C] ©,{p})|]({q} (p.a)) \]({p} {p.q})]

@, {p, q})

85

Stable Operator: Example {p < —q;q < ¢}

S(ZCp)(0, {p}) = (S(ZCH)({p}), S(TCH)(1))
((e.1.0)

]({q},m\]({p},b)\]({p 9 o)) \]({p a}, {p})|

\ !({q} {q})\ C[(o}, {p} \ ! {p a}.{p.a})]

[{q})\ C] @ {p})\]({q} (p.a)) \]({p} {p.q})]

@, {p, q})

85

Stable Operator: Example {p < —q;q < ¢}

S(ZCp)({p}) = Ifp(ZCp(-,{P}))
({p.a}.0)

]({q},m\]({p},b)\]({‘p,"q},{q})\]({p,q},{p})\

[(0,0) \ {q} {q})

! ({p}. {p}) \ | ({p} abp.a})]

\

[{q})\](@ {r})]]({q} (p.a)) \]({p} {p.q})]

@, {p, q})

85

Stable Operator: Example {p < —q;q < ¢}

S(ZCp)(x) = lfp(ZCH({p}, "))
({p q} ®)

]({q},m\]({p} w)\]({p 9 o)) \]({p a}, {p})|

]((010)\: !({q} {q})\ Cldey, {p} [U{p a}, {p.q})]

](ﬂ{q})'\](@ {p})\]({q} (p.a)) \]({p} {p.q})]

@, {p, q})

85

Stable Operator: Example {p < —q;q < ¢}

S(ZCr)({r}, {p}) = (S(ZCH)({pP}), S(ZCH)({p}))
({p q} ®)

]({q},m\]({p} w)\]({pq})]({pq} {r})]

]((010)\: !({q} {q})\ !({p} {p} [U{p a}, {p.q})]

](ﬂ{q})'\](@ {p})\]({q} (p.a)) \]({p} {p.q})]

@, {p, q})

85

Stable Operator and Well-Founded Model

S(ZCp)(y) = f(ZCp(,y)) S(ZCP)(x) = Ifp(ZCH(x,))
S(ZCp)(x,y) = (S(ZCP)(y), S(TCP)(x))

e S(ZCp) is a <;-monotonic operator, so it admits a least fixpoint.
We call this the well-founded model, denoted WF(P).

36

Stable Operator and Well-Founded Model

S(ZCH)(y) = Mo(ICh(-y)) STCHY(x) = Ifp(TC(x, "))
S(ZCp)(x,y) = (S(ZCP)(y), S(ZCh)(x))
e S(ZCp) is a <;-monotonic operator, so it admits a least fixpoint.
We call this the well-founded model, denoted WF(P).

e The well-founded model is more precise than the Kripke-Kleene
fixpoint: KK(P) <; WF(P).

36

Stable Operator and Well-Founded Model

S(ZCp)(y) = f(ZCp(,y)) S(ZCP)(x) = Ifp(ZCH(x,))
S(ZCp)(x,y) = (S(ZCP)(y), S(TCP)(x))

e S(ZCp) is a <;-monotonic operator, so it admits a least fixpoint.
We call this the well-founded model, denoted WF(P).

e The well-founded model is more precise than the Kripke-Kleene
fixpoint: KK(P) <; WF(P).

e Any fixpoint of S(ZCp) is a minimal model of P.

If (x,y) = S(ZCp)(x,y), we call it a (partial) stable model.

If x = S(ZCp)(x), we call it a stable model.

36

Stable Operator and Well-Founded Model

S(ZCp)(y) = f(ZCp(,y)) S(ZCP)(x) = Ifp(ZCH(x,))
S(ZCp)(x,y) = (S(ZCP)(y), S(TCP)(x))

e S(ZCp) is a <;-monotonic operator, so it admits a least fixpoint.
We call this the well-founded model, denoted WF(P).

e The well-founded model is more precise than the Kripke-Kleene
fixpoint: KK(P) <; WF(P).

e Any fixpoint of S(ZCp) is a minimal model of P.

If (x,y) = S(ZCp)(x,y), we call it a (partial) stable model.

If x = S(ZCp)(x), we call it a stable model.

e If Tp has a least fixpoint, it coincides with the well-founded
model.

36

Stable Operator: Example

p< 7,9+ 4q
((e.1.)

]({q},@)‘\]({p} w)\]({p 9 o)) \]({p a}, {p})|

[©.0)] {q} {q} m m
T “

(. {q}) (0. {p})]({q},{p,q})\]({p},{p,q})\
O‘

37

Stable Operator: Example 2

P={p<+—q q<« —p, r«r, s« —r}

o Kripke-Kleene fixpoint: (0, {p,q,r,s}).
e Well-founded model: ({s},{p,q,s}).
 Stable models: ({p,s}, {p,s}). ({a,5}, {4,5})

38

Stable Semantics and Reducts

P
;:{a<—b1,...,bn |a < b1,...,bp,C1,...,7CHn €P

Cly...,Cn & x}

Definition
X Is a stable model of P if it is a minimal model of%

39

Stable Semantics and Reducts

P
—={a< b1,...,by|la¢ b1,...,by,C1,...,7Cn €P
X
Cly...,Cn & x}
Definition
X Is a stable model of P if it is a minimal model of%

Example (P = {p < —p; g < —p;p < —q})
% ={p < q<«}. {q} is not a minimal model of P, thus {q} is
not a stable model.

% = {p <}. {p} is a minimal model of P.{q} is not a minimal
model of P, thus {p} is a stable model.

39

Stable Semantics and Reducts

P
—={a< b1,...,by|la¢ b1,...,by,C1,...,7Cn €P
X
Cly...,Cn & x}
Definition
X Is a stable model of P if it is a minimal model of%

Proposition
S(ZCH)(y) is the set of minimal models of%

Proposition
(x,x) = S(ZCp)(x, x) if and only if x is a stable model of P

(iff x = S(ZChH)(x)).

39

Approximation Fixpoint Theory

Supported model Stable model
(x,x) € ZCp(x, x) (x,x) € S(ZCp)(x,x)

Partial Supported model
(x,y) =ICp(x,y)

Partial stable model ’

] (x,y) = S(ICp)(x) <o [Least fixpoint of Tp}

[KK model U;o(ZCp(0, A]<—[WF model U,>0(((ch)(e),A))’]

e Operator-based framework
e Non-monotonic operator Tp,
e a <;-monotonic approximation operator /Cp,
e and its stable variant S(ZCp).
e Allow us to define semantics as fixpoints of these operators,
with attractive properties:
e KK and WF models exist, can be constructively found, and
e approximate any fixpoint of Tp.

e This story can be told for a great number of formalisms. 40

Lattices, bilattices, operators

Given a lattice L = (£, <).

Interested in operator Of : £ — L and its fixpoints.
o (x1,51) <i (x2,¥2) iff e < xp and y1 > yo,

o (x1,y1) <t (x2,¥2) iff xx < x2 and y1 < ya.

41

Lattices, bilattices, operators

Given a lattice L = (£, <).

Interested in operator Of : £ — L and its fixpoints.

o (x1,y1) <i (x2,¥2) iff xa <xp and y1 > yo,

o (x1,y1) <t (2, y2) iff x1 < x2 and y1 < yo.

(£2,<;, <) is called a bilattice. Approximate O with an
approximation operator @ : £2 — £2, which is <;-monotonic and
for which O(x, x) = (O(x), Oz(x)) for any x € L.

41

Lattices, bilattices, operators

Given a lattice L = (£, <).
Interested in operator Of : £ — L and its fixpoints.
o (x1,y1) <i (x2,¥2) iff xa <xp and y1 > yo,
o (x1,y1) <t (2, y2) iff x1 < x2 and y1 < yo.
(£2,<;, <) is called a bilattice. Approximate O with an
approximation operator @ : £2 — £2, which is <;-monotonic and
for which O(x, x) = (O(x), Oz(x)) for any x € L.

Formalism Lattice Elements Order
Logic Programming Possible worlds C
Default Logic and AEL | Sets of possible worlds | D
Formal Argumentation | Sets of arguments -

Weighted ADFs
SHACL

Weighted worlds
Interpretations

Pointwise comparison
Truth order

41

Operator-Based Semantics for Dialects of Logic Programming

Aggregates in the body: p «+ #sum{2:p;q:1;r:1} > 2.
Propositional formulas in the body: p <— g A (r V (s A —t)).
Disjunctions in the head: pV g <= g A (rV (s A —t)).
Choice constructs in the head: #count{p; q;r} =2« —r.
DL-based logic programs: KC(x) <— —p(X); C C D.
Higher-order logic programs: S(P, Q) <—; P(X) + —=Q(X).
Fuzzy logic programs: p(X) < 0.5 (q(x) + r(X)).

~n << << <L

? Probabilistic logic programs: 0.3 :: p(X).
? Hex-programs: tr(S, P, O) <— &RDF][uri](S, P, O).

42

Operator-Based Semantics for other KR-formalisms

e autoepistemic logic [DMTO3],

o default logic [DMTO03],

e abstract argumentation [SW15],

e abstract dialectical frameworks [SW15],

e weighted abstract dialectical frameworks [Bogl19],
o SCHACL [BJ21].

43

Operator-Based Studies

Top-Down approach:

e Instead of studying a concept for a specific framework, define

and study it for operators over a lattice (and their

approximations).

e We can then apply this concept to all formalisms that are or

can be captured in AFT.

Examples:

V' Stratification [VGDO06]

Vv Conditional Independence [Hey23]
V' Knowledge Compilation [BVdB15]
V' Groundedness [BVdB15]

V' Strong equivalence [Tru06]

V Argumentative dialogues
[HA20]

7 Belief dynamics
? Modular equivalence

? Neuro-symbolism K

Round up

Course on Answer Set Programming

e UCT-students: 12-23rd February (Monday-Thursday).
e Non-UCT-students: recordings via NITheCS.

Course will have a more practical focus.
Topics:

e ASP syntax and semantics.

e Hierarchical and combinatorial modelling in ASP.

Grounding and solving algorithms.

Formal argumentation.

Inductive logic programming (learning logic programs).

45

e Operators as the core for understanding answer set semantics.
e Paved the road towards approximation fixpoint theory.

e Algebraic theory that allows language independent work on
KR.

e Requires some buy-in, but in my view a great bargain.

e Interested in cooperating? Questions on AFT? Come talk to
me.

46

Bibliography i

[Theofanis | Aravanis and Pavlos Peppas.
Belief revision in answer set programming.
In Proceedings of the 21st Pan-Hellenic Conference on
Informatics, pages 1-5, 2017.

[§ Bart Bogaerts and Maxime Jakubowski.
Fixpoint semantics for recursive shacl.
In 37th International Conference on Logic Programming, pages
41-47. Open Publishing Association, 2021.

47

Bibliography ii

[§ Jonathan Ben-Naim, Salem Benferhat, Odile Papini, and Eric
Wiirbel.
An answer set programming encoding of prioritized
removed sets revision: application to gis.
In European Workshop on Logics in Artificial Intelligence,
pages 604-616. Springer, 2004.

[§ Gerhard Brewka, llkka Niemel3, and Tommi Syrjinen.
Implementing ordered disjunction using answer set
solvers for normal programs.

In Logics in Artificial Intelligence: 8th European Conference,
JELIA 2002 Cosenza, Italy, September 23-26, 2002
Proceedings 8, pages 444—456. Springer, 2002.

48

Bibliography iii

[4 Bart Bogaerts.
Weighted abstract dialectical frameworks through the
lens of approximation fixpoint theory.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 2686—2693, 2019.

[4 Bart Bogaerts and Guy Van den Broeck.
Knowledge compilation of logic programs using
approximation fixpoint theory.
Theory and Practice of Logic Programming, 15(4-5):464-480,
2015.

49

Bibliography iv

[Marc Denecker, Victor Marek, and Mirostaw Truszczynski.
Approximations, stable operators, well-founded fixpoints
and applications in nonmonotonic reasoning.

In Logic-based Artificial Intelligence, volume 597 of The
Springer International Series in Engineering and Computer
Science, pages 127-144. Springer, 2000.

@ Marc Denecker, Victor Marek, and Mirostaw Truszczynski.
Uniform semantic treatment of default and
autoepistemic logics.

Artificial Intelligence, 143(1):79-122, 2003.

50

Bibliography v

E Wolfgang Dvo¥ak, Anna Rapberger, Johannes P Wallner, and
Stefan Woltran.

Aspartix-v19-an answer-set programming based system
for abstract argumentation.
In International Symposium on Foundations of Information and
Knowledge Systems, pages 79-89. Springer, 2020.

[d Melvin Fitting.
Bilattices are nice things.
In Self Reference, volume 178 of CSLI Lecture Notes, pages
53-77. CLSI Publications, 2006.

Bl

Bibliography vi

[§ Jesse Heyninck and Ofer Arieli.
Argumentative reflections of approximation fixpoint
theory.
In Computational Models of Argument, pages 215-226. 10S
Press, 2020.

[§ Jesse Heyninck.
An algebraic notion of conditional independence, and its
application to knowledge representation (preliminary
report).
2023.

52

Bibliography vii

E Ignacio Huitzil, Giuseppe Mazzotta, Rafael Pefialoza,
Francesco Ricca, et al.
Asp-based axiom pinpointing for description logics.
In CEUR WORKSHOP PROCEEDINGS, volume 3515, pages
1-13. CEUR-WS, 2023.

[4 Tarek Khaled and Belaid Benhamou.
An asp-based approach for attractor enumeration in
synchronous and asynchronous boolean networks.
arXiv preprint arXiv:1909.08251, 2019.

53

Bibliography viii

[§ Isabelle Kuhlmann, Carl Corea, and John Grant.
Non-automata based conformance checking of
declarative process specifications based on asp.

In International Conference on Business Process Management,
pages 396—408. Springer, 2023.

[Roland Kaminski, Javier Romero, Torsten Schaub, and Philipp

Wanko.

How to build your own asp-based system?!

Theory and Practice of Logic Programming, 23(1):299-361,
2023.

54

Bibliography ix

[§ Isabelle Kuhlmann and Matthias Thimm.
Algorithms for inconsistency measurement using answer
set programming.
In 19th International Workshop on Non-Monotonic Reasoning
(NMR), pages 159-168, 2021.

[Hannes Strass and Johannes Peter Wallner.
Analyzing the computational complexity of abstract
dialectical frameworks via approximation fixpoint theory.
Artificial Intelligence, 226:34—74, 2015.

55

Bibliography x

[3 Terrance Swift.
Deduction in ontologies via asp.
In International Conference on Logic Programming and
Nonmonotonic Reasoning, pages 275-288. Springer, 2004.

[d Mirostaw Truszczyriski.
Strong and uniform equivalence of nonmonotonic
theories—an algebraic approach.
Annals of Mathematics and Artificial Intelligence,
48(3-4):245-265, 2006.

56

Bibliography xi

[§] Joost Vennekens, David Gilis, and Marc Denecker.
Splitting an operator: Algebraic modularity results for
logics with fixpoint semantics.

ACM Transactions on computational logic (TOCL),
7(4):765-797, 2006.

[§ Allen Van Gelder, Kenneth A Ross, and John S Schlipf.
The well-founded semantics for general logic programs.
Journal of the ACM, 38(3):619-649, 1991.

57

	Syntax of Logic Programs
	Semantics of Positive Programs
	Semantics of Normal Logic Programs
	Stable Semantics
	Approximation Fixpoint Theory
	Round up

